Composite diffusion limited aggregation paintings
Inhaltsverzeichnis
Reference
Greenfield, G.: Composite diffusion limited aggregation paintings. In: Sarhangi, R., Barrallo, J. (eds.) BRIDGES 2007 Conference Proceedings, pp. 15–20 (2007).
DOI
http://link.springer.com/chapter/10.1007%2F978-3-540-78761-7_43
Abstract
Diffusion limited aggregation (DLA) is a simulation technique for modeling dendritic growth. It has seen limited use for artistic purposes. We consider an evolutionary scheme for evolving DLA compositions with multiple seed particles. As a consequence we are led to consider robustness and stability issues related to the use of evolutionary computation whose phenotypes invoke inherently random processes.
Extended Abstract
Bibtex
Used References
Batty, M.: Cities and Complexity. MIT Press, Cambridge (2005)
Bourke, P.: Constrained limited diffusion aggregation in 3 dimensions. Computers and Graphics 30(4), 646–649 (2006) http://dx.doi.org/10.1016/j.cag.2006.03.011
Bourke, P.: Diffusion Limited Aggregtion (accessed March 2007) (2007), http://local.wasp.uwa.edu.au/~pbourke/fractals/dla/ 404
Casselman, B.: About the cover Aggregation 22. Notices of the American Mathematical Society 54(6), 800 (2007)
Gaylord, R., Tyndall, W.: Diffusion limited aggregation. Mathematica in Education 1(3), 6–10 (1992) (accessed October 2007), http://library.wolfram.com/infocenter/Articles/2866/
Greenfield, G.: Composite diffusion limited aggregation paintings. In: Sarhangi, R., Barrallo, J. (eds.) BRIDGES 2007 Conference Proceedings, pp. 15–20 (2007)
Halsey, T.: Diffusion-limited aggregation: a model for pattern formation. Physics Today 53(11), 36–47 (2000) (accessed October 2007), http://www.physicstoday.org/pt/vol-53/iss-11/p36.html 404 http://dx.doi.org/10.1063/1.1333284
Kobayashi, Y., Niitsu, T., Takahashi, K., Shimoida, S.: Mathematical modeling of metal leaves. Mathematics Magazine 76(4), 295–298 (2003) http://dx.doi.org/10.2307/3219085
Lomas, A.: 2006 Bridges Exhibit of Mathematical Art, London (2006) (accessed October, 2007), http://www.bridgesmathart.org/art-exhibits/bridges06/lomas.html
Lomas, A.: Private communication (2006)
Long, J.: Modeling dendritic structures for artistic effects. MSc. Thesis University of Saskatchewan (2007) (accessed October 2007), http://www.cs.usask.ca/grads/jsl847/ 404
Ramachandran, V., Hirstein, W.: The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies 6(1–2), 15–52 (1999)
Verotsko, R., Algoritmic art, http://www.verostko.com/ (accessed December, 2006)
Voss, R.: Fractals in nature: From characterization to simulation. In: Peitgen, H., Saupe, D. (eds.) The Science of Fractal Images, pp. 36–38. Springer, New York (1988)
Witten, T., Sander, L.: Diffusion-limited aggregation, a kinematic critical phenomenon. Physical Review Letters 47, 1400–1403 (1981) http://dx.doi.org/10.1103/PhysRevLett.47.1400
Zeki, S.: Inner Vision, An Exploration of Art and the Brain. Oxford University Press, New York (1999)
Links
Full Text
http://archive.bridgesmathart.org/2007/bridges2007-15.pdf