Computing aesthetics with image judgement systems

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Romero, J., Machado, P., Carballal, A., Correia, J.: Computing aesthetics with image judgement systems. In: McCormack, J., do, M. (eds.) Computers and Creativity, pp. 295–322. Springer, Heidelberg (2012)



The ability of human or artificial agents to evaluate their works, as well as the works of others, is an important aspect of creative behaviour, possibly even a requirement. In artistic fields such as visual arts and music, this evaluation capacity relies, at least partially, on aesthetic judgement. This chapter analyses issues regarding the development of computational systems that perform aesthetic judgements focusing on their validation. We present several alternatives, as follows: the use of psychological tests related to aesthetic judgement; the testing of these systems in style recognition tasks; and the assessment of the system’s ability to predict the users’ valuations or the popularity of a given work. An adaptive system is presented and its performance assessed using the above-mentioned validation methodologies.

Extended Abstract


booktitle={Computers and Creativity},
editor={McCormack, Jon and d’Inverno, Mark},
title={Computing Aesthetics with Image Judgement Systems},
url={ },
publisher={Springer Berlin Heidelberg},
author={Romero, Juan and Machado, Penousal and Carballal, Adrian and Correia, João},

Used References

Arnheim, R. (1956). Art and visual perception, a psychology of the creative eye. London: Faber and Faber.

Arnheim, R. (1966). Towards a psychology of art/entropy and art—an essay on disorder and order. The Regents of the University of California.

Arnheim, R. (1969). Visual thinking. Berkeley: University of California Press.

Athitsos, V., Swain, M. J., & Frankel, C. (1997). Distinguishing photographs and graphics on the world wide web. In Proceedings of the 1997 workshop on content-based access of image and video libraries (CBAIVL ’97), CAIVL ’97 (pp. 10–17). Washington: IEEE Computer Society.

Baluja, S., Pomerlau, D., & Todd, J. (1994). Towards automated artificial evolution for computer-generated images. Connection Science, 6(2), 325–354.

Boden, M. A. (1990). The creative mind: myths and mechanisms. New York: Basic Books.

Burt, C. (1933). The psychology of art. In How the mind works. London: Allen and Unwin.

Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679–698.

Chamorro-Premuzic, T., & Furnham, A. (2004). Art judgement: a measure related to both personality and intelligence? Imagination, Cognition and Personality, 24, 3–25.

Cope, D. (1992). On the algorithmic representation of musical style. In O. Laske (Ed.), Understanding music with AI: perspectives on music cognition (pp. 354–363). Cambridge: MIT Press.

Cutzu, F., Hammoud, R. I., & Leykin, A. (2003). Estimating the photorealism of images: distinguishing paintings from photographs. In CVPR (2) (pp. 305–312). Washington: IEEE Computer Society.

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In Lecture notes in computer science. Computer vision—ECCV 2006, 9th European conference on computer vision, part III, Graz, Austria (pp. 288–301). Berlin: Springer.

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: ideas, influences, and trends of the new age. ACM Computing Surveys, 40, 5:1–5:60.

Dorin, A., & Korb, K. B. (2009). Improbable creativity. In M. Boden, M. D’Inverno, & J. McCormack (Eds.), Dagstuhl seminar proceedings: Vol. 09291. Computational creativity: an interdisciplinary approach, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.

Eysenck, H. (1969). Factor analytic study of the Maitland Graves Design Judgement Test. Perceptual and Motor Skills, 24, 13–14.

Eysenck, H. J. (1983). A new measure of ‘good taste’ in visual art. Leonardo, Special Issue: Psychology and the Arts, 16(3), 229–231.

Eysenck, H. J., & Castle, M. (1971). Comparative study of artists and nonartists on the Maitland Graves Design Judgment Test. Journal of Applied Psychology, 55(4), 389–392.

Eysenck, H. J., Götz, K. O., Long, H. Y., Nias, D. K. B., & Ross, M. (1984). A new visual aesthetic sensitivity test—IV. Cross-cultural comparisons between a Chinese sample from Singapore and an English sample. Personality and Individual Differences, 5(5), 599–600.

Field, D. J., Hayes, A., & Hess, R. F. (2000). The roles of polarity and symmetry in the perceptual grouping of contour fragments. Spatial Vision, 13(1), 51–66.

Fisher, Y. (Ed.) (1995). Fractal image compression: theory and application. London: Springer.

Frois, J., & Eysenck, H. J. (1995). The visual aesthetic sensitivity test applied to Portuguese children and fine arts students. Creativity Research Journal, 8(3), 277–284.

Furnham, A., & Walker, J. (2001). The influence of personality traits, previous experience of art, and demographic variables on artistic preference. Personality and Individual Differences, 31(6), 997–1017.

Götz, K. (1985). VAST: visual aesthetic sensitivity test. Dusseldorf: Concept Verlag.

Götz, K. O., & Götz, K. (1974). The Maitland Graves Design Judgement Test judged by 22 experts. Perceptual and Motor Skills, 39, 261–262.

Graves, M. (1946). Design judgement test. New York: The Psychological Corporation.

Graves, M. (1948). Design judgement test, manual. New York: The Psychological Corporation.

Graves, M. (1951). The art of color and design. New York: McGraw-Hill.

Itten, J. (1973). The art of color: the subjective experience and objective rationale of color. New York: Wiley.

Iwawaki, S., Eysenck, H. J., & Götz, K. O. (1979). A new visual aesthetic sensitivity test (vast): II. Cross cultural comparison between England and Japan. Perceptual and Motor Skills, 49(3), 859–862.

Ke, Y., Tang, X., & Jing, F. (2006). The design of high-level features for photo quality assessment. Computer Vision and Pattern Recognition, IEEE Computer Society Conference, 1, 419–426.

Kowaliw, T., Dorin, A., & McCormack, J. (2009). An empirical exploration of a definition of creative novelty for generative art. In K. B. Korb, M. Randall & T. Hendtlass (Eds.), Lecture notes in computer science: Vol. 5865. ACAL (pp. 1–10). Berlin: Springer.

Luo, Y., & Tang, X. (2008). Photo and video quality evaluation: focusing on the subject. In D. A. Forsyth, P. H. S. Torr & A. Zisserman (Eds.), Lecture notes in computer science: Vol. 5304. ECCV (3) (pp. 386–399). Berlin: Springer.

Lyu, S., & Farid, H. (2005). How realistic is photorealistic? IEEE Transactions on Signal Processing, 53(2), 845–850.

Machado, P., & Cardoso, A. (1998). Computing aesthetics. In F. Oliveira (Ed.), Lecture notes in computer science: Vol. 1515. Proceedings of the XIVth Brazilian symposium on artificial intelligence: advances in artificial intelligence, Porto Alegre, Brazil (pp. 219–229). Berlin: Springer.

Machado, P., & Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, Special Issue on Creative Systems, 16(2), 101–119.

Machado, P., Romero, J., & Manaris, B. (2007). Experiments in computational aesthetics: an iterative approach to stylistic change in evolutionary art. In J. Romero & P. Machado (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 381–415). Berlin: Springer.

Machado, P., Romero, J., Manaris, B., Santos, A., & Cardoso, A. (2003). Power to the critics—a framework for the development of artificial art critics. In IJCAI 2003 workshop on creative systems, Acapulco, Mexico.

Machado, P., Romero, J., Santos, A., Cardoso, A., & Manaris, B. (2004). Adaptive critics for evolutionary artists. In R. Günther et al. (Eds.), Lecture notes in computer science: Vol. 3005. Applications of evolutionary computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Coimbra, Portugal (pp. 435–444). Berlin: Springer.

Manaris, B., Romero, J., Machado, P., Krehbiel, D., Hirzel, T., Pharr, W., & Davis, R. (2005). Zipf’s law, music classification and aesthetics. Computer Music Journal, 29(1), 55–69.

Manaris, B., Roos, P., Machado, P., Krehbiel, D., Pellicoro, L., & Romero, J. (2007). A corpus-based hybrid approach to music analysis and composition. In Proceedings of the 22nd conference on artificial intelligence (AAAI 07), Vancouver, BC.

Marchenko, Y., Chua, T.-S., & Aristarkhova, I. (2005). Analysis and retrieval of paintings using artistic color concepts. In ICME (pp. 1246–1249). New York: IEEE Press.

Nadal, M. (2007). Complexity and aesthetic preference for diverse visual stimuli. PhD thesis, Departament de Psicologia, Universitat de les Illes Balears.

Neufeld, C., Ross, B., & Ralph, W. (2007). The evolution of artistic filters. In J. Romero & P. Machado (Eds.), The art of artificial evolution. Berlin: Springer.

Rigau, J., Feixas, M., & Sbert, M. (2008). Informational dialogue with Van Gogh’s paintings. In Eurographics symposium on computational aesthetics in graphics, visualization and imaging (pp. 115–122).

Romero, J., Machado, P., Santos, A., & Cardoso, A. (2003). On the development of critics in evolutionary computation artists. In R. Günther et al. (Eds.), Lecture notes in computer science: Vol. 2611. Applications of evolutionary computing, EvoWorkshops 2003: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Essex, UK. Berlin: Springer.

Saunders, R. (2001). Curious design agents and artificial creativity—a synthetic approach to the study of creative behaviour. PhD thesis, University of Sydney, Department of Architectural and Design Science Faculty of Architecture, Sydney, Australia.

Savarese, J. M., & Miller, R. (1979). Artistic preferences and cognitive-perceptual style. Studies in Art Education, 20, 41–45.

Schmidhuber, J. (1997). Low-complexity art. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology, 30(2), 97–103.

Schmidhuber, J. (1998). Facial beauty and fractal geometry.

Schmidhuber, J. (2007). Simple algorithmic principles of discovery, subjective beauty, selective attention, curiosity and creativity. In M. Hutter, R. A. Servedio & E. Takimoto (Eds.), Lecture notes in computer science: Vol. 4754. ALT (pp. 32–33). Berlin: Springer.

Sobel, I. (1990). An isotropic 3×3 image gradient operator. In Machine vision for three-dimensional scenes (pp. 376–379).

Spector, L., & Alpern, A. (1994). Criticism, culture, and the automatic generation of artworks. In Proceedings of twelfth national conference on artificial intelligence (pp. 3–8). Seattle/Washington: AAAI Press/MIT Press.

Spehar, B., Clifford, C. W. G., Newell, N., & Taylor, R. P. (2003). Universal aesthetic of fractals. Computers and Graphics, 27(5), 813–820.

Staudek, T. (2002). Exact aesthetics. Object and scene to message. PhD thesis, Faculty of Informatics, Masaryk University of Brno.

Staudek, T. (2003). Computer-aided aesthetic evaluation of visual patterns. In ISAMA-BRIDGES conference proceedings, Granada, Spain (pp. 143–149).

Svangård, N., & Nordin, P. (2004). Automated aesthetic selection of evolutionary art by distance based classification of genomes and phenomes using the universal similarity metric. In R. Günther et al. (Eds.), Lecture notes in computer science: Vol. 3005. Applications of evolutionary computing, EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC, Coimbra, Portugal (pp. 445–454). Berlin: Springer.

Taylor, R. P., Micolich, A. P., & Jonas, D. (1999). Fractal analysis of Pollock’s drip paintings. Nature, 399, 422.

Teller, A., & Veloso, M. (1996). PADO: a new learning architecture for object recognition. In K. Ikeuchi & M. Veloso (Eds.), Symbolic visual learning (pp. 81–116). London: Oxford University Press.

Tong, H., Li, M., Zhang, H., He, J., & Zhang, C. (2004). Classification of digital photos taken by photographers or home users. In K. Aizawa, Y. Nakamura & S. Satoh (Eds.), Lecture notes in computer science: Vol. 3331. PCM (1) (pp. 198–205). Berlin: Springer.

Tyler, C. W. (Ed.) (2002). Human symmetry perception and its computational analysis. Hillsdale: Erlbaum.

Uduehi, J. (1995). A cross-cultural assessment of the maitland graves design judgment test using U.S. and Nigerian students. Visual Arts Research, 21(2), 11–18.

Wallraven, C., Cunningham, D. W., & Fleming, R. (2008). Perceptual and computational categories in art. In P. Brown (Ed.), International symposium on computational aesthetics in graphics, visualization, and imaging (pp. 131–138). Aire-la-Ville: Eurographics Association.

Wallraven, C., Fleming, R. W., Cunningham, D. W., Rigau, J., Feixas, M., & Sbert, M. (2009). Categorizing art: comparing humans and computers. Computers & Graphics, 33(4), 484–495.

Wertheimer, M. (1939). Laws of organization in perceptual forms. In W. D. Ellis (Ed.), A source book of gestalt psychology (pp. 71–88). New York: Harcourt Brace.

Wong, L.-K., & Low, K.-L. (2009). Saliency-enhanced image aesthetics class prediction. In ICIP (pp. 997–1000). New York: IEEE Press.

Yan, Y., & Jin, J. S. (2005). Indexing and retrieving oil paintings using style information. In S. Bres & R. Laurini (Eds.), Lecture notes in computer science: Vol. 3736. VISUAL (pp. 143–152). Berlin: Springer.

Zell, A., Mamier, G., Vogt, M., Mache, N., Hübner, R., Döring, S., Herrmann, K.-U., Soyez, T., Schmalzl, M., Sommer, T., et al. (2003). SNNS: Stuttgart neural network simulator user manual, version 4.2 (Technical Report 3/92). University of Stuttgart, Stuttgart.

Zipf, G. K. (1949). Human behaviour and the principle of least effort: an introduction to human ecology. Reading: Addison-Wesley.


Full Text

intern file

Sonstige Links