Cooperative coevolution of image feature construction and object detection
Inhaltsverzeichnis
Reference
Roberts, M.E., Claridge, E.: Cooperative coevolution of image feature construction and object detection. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 902–911. Springer, Heidelberg (2004)
DOI
http://link.springer.com/chapter/10.1007%2F978-3-540-30217-9_91
Abstract
Most previous approaches using genetic programming tosolve object detection tasks have evolved classifiers which are basically arithmetic expressions using pre-extracted local pixel statistics as terminals. The pixel statistics chosen are often highly general, meaning that the classifier cannot exploit useful aspects of the domain, or are too domain specific and overfit. This work presents a system whereby a feature construction stage is simultaneously coevolved along side the GP object detectors. Effectively, the system learns both stages of the visual process simultaneously. This work shows initial results of using this technique on both artificial and natual images and shows how it can quickly adapt to form general solutions to difficult scale and rotation invariant problems.
Extended Abstract
Bibtex
Used References
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Tackett, W.A.: Genetic programming for feature discovery and image discrimination. In: Proceedings of the 5th International Conference on Genetic Algorithms, ICGA 1993, pp. 303–309. Morgan Kaufmann, San Francisco (1994)
Daida, J.M., Bersano-Begey, T.F., Ross, S.J., Vesecky, J.F.: Computer-assisted design of image classification algorithms: Dynamic and static fitness evaluations in a scaffolded genetic programming environment. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Proceedings of the First Annual Conference on Genetic Programming 1996, Stanford University, CA, USA, pp. 279–284. MIT Press, Cambridge (1996)
Howard, D., Roberts, S.C.: Evolving object detectors for infrared imagery: a comparison of texture analysis against simple statistics. In: Miettinen, K., Mäkelä, M.M., Neittaanmäki, P., Periaux, J. (eds.) Evolutionary Algorithms in Engineering and Computer Science, pp. 79–86. John Wiley & Sons, Chichester (1999)
Howard, D., Roberts, S.C., Brankin, R.: Target detection in imagery by genetic programming. Advances in Engineering Software 30, 303–311 (1999) http://dx.doi.org/10.1016/S0965-9978(98)00093-3
Winkeler, J.F., Manjunath, B.S.: Genetic programming for object detection. In: Koza, J.R., et al. (eds.) Proceedings of the Second Annual Conference on Genetic Programming 1997, pp. 330–335. Morgan Kaufmann, San Francisco (1997)
Ross, B.J., Fueten, F., Yashkir, D.Y.: Edge detection of petrographic images using genetic programming. In: Proceedings of Genetic and Evolutionary Computation GECCO 2000, pp. 658–665. Morgan Kaufmann, San Francisco (2000)
Zhang, M.: A Domain Independent Approach to 2d Object Detection Based on Neural Networks and Genetic Paradigms. PhD thesis, Department of Computer Science, RMIT University, Melbourne, Victoria, Australia (2000)
Zhang, M., Bhowan, U.: Program size and pixel statistics in genetic programming for object detection. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 377–386. Springer, Heidelberg (2004)
Potter, M.A., De Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Proceedings of the Third Conference on Parallel Problem Solving from Nature. LNCS, pp. 249–257. Springer, Heidelberg (1994)
Motoda, H., Liu, H.: Feature selection, extraction and construction. In: Towards the Foundation of DataMiningWorkshop, Sixth Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2002), Taipei, Taiwan, pp. 67–72 (2002)
Bala, J., Jong, K.D., Huang, J., Vafaie, H., Wechsler, H.: Using learning to facilitate the evolution of features for recognizing visual convepts. Evolutionary Computation 4 (1997)
Bala, J., Jong, K.D., Huang, J., Vafaie, H., Wechsler, H.: Visual routine for eye detection using hybrid genetic architectures. In: Bolle, R., Dickmanns, E. (eds.) Proceedings of the International Conference on Pattern Recognition, Vienna, Austria, vol. 3, pp. 606–610. IEEE, Los Alamitos (1996) http://dx.doi.org/10.1109/ICPR.1996.547018
Krawiec, K., Bhanu, B.: Coevolution and linear genetic programming for visual learning. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 332–343. Springer, Heidelberg (2003) http://dx.doi.org/10.1007/3-540-45105-6_39
Lin, Y., Bhanu, B.: Learning features for object recognition. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 2227–2239. Springer, Heidelberg (2003) http://dx.doi.org/10.1007/3-540-45110-2_117
Guardo, A., Gal, C.L., Lux, A.: Evolving visual features and detectors. In: da Fontoura, et al. (eds.) International Symposium on Computer Graphics, Image Processing, and Vision (SIGGRAPI 1998), Rio De Janeiro, Brazil, pp. 246–253. IEEE, Los Alamitos (1998)
Ahluwalia, M., Bull, L.: Coevolving functions in genetic programming. Journal of Systems Architecture 47, 573–585 (2001) http://dx.doi.org/10.1016/S1383-7621(01)00016-9
Ahluwalia, M., Bell, L., Fogarty, T.C.: Co-evolving functions in genetic programming: A comparison in ADF selection strategies. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Proceedings of the Second Annual Conference on Genetic Programming 1997, pp. 3–8. Morgan Kaufmann, San Francisco (1997)
Wiegand, R.P., Liles, W.C., Jong, K.A.D.: An empirical analysis of collaboration methods in cooperative coevolutionary algorithms. In: Raidl, G.R., Cagnoni, S., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), Berlin. LNCS, vol. 2611, pp. 1235–1245. Morgan Kaufmann, San Francisco (2001)
Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004) http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning in genetic programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 312–321. Springer, Heidelberg (1994)
Poli, R.: A simple but theoretically-motivated method to control bloat in genetic programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 200–210. Springer, Heidelberg (2003) http://dx.doi.org/10.1007/3-540-36599-0_19