Creating New Informational Primitives in Minds and Machines

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Peter Cariani: Creating New Informational Primitives in Minds and Machines. In: McCormack & d’Inverno: Computers and Creativity, Springer, Berlin, 2012, 383-417



Creativity involves the generation of useful novelty. Two modes of creating novelty are proposed: via new combinations of pre-existing primitives (combinatoric emergence) and via creation of fundamentally new primitives (creative emergence). The two modes of creativity can be distinguished by whether the changes still fit into an existing framework of possibility, or whether new dimensions in an expanded interpretive framework are needed. Although computers are well suited to generating new combinations, it is argued that computations within a framework cannot produce new primitives for that framework, such that non-computational constructive processes must be utilised to expand the frame. Mechanisms for combinatoric and creative novelty generation are considered in the context of adaptively self-steering and self-constructing goal-seeking percept-action devices. When such systems can adaptively choose their own sensors and effectors, they attain a degree of epistemic autonomy that allows them to construct their own meanings. A view of the brain as a system that creates new neuronal signal primitives that are associated with new semantic and pragmatic meanings is outlined.

Extended Abstract


booktitle={Computers and Creativity},
editor={McCormack, Jon and d’Inverno, Mark},
title={Creating New Informational Primitives in Minds and Machines},
url={ },
publisher={Springer Berlin Heidelberg},
author={Cariani, Peter},

Used References

Alexander, S. (1927). Space, time, and deity. London: Macmillan & Co.

Anderson, J. A., Rosenfeld, E., & Pellionisz, A. (1988). Neurocomputing. Cambridge: MIT Press.

Ando, Y., & Cariani, P. G. E. (2009). Auditory and visual sensations. New York: Springer.

Arbib, M. (2003). The handbook of brain theory and neural networks. Cambridge, MA: MIT Press.

Arbib, M. A. (1989). The metaphorical brain 2: neural nets and beyond. New York: Wiley.

Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge: Cambridge University Press.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–660.

Barsalou, L. W., & Prinz, J. J. (1997). Mundane creativity in perceptual symbol systems. In T. Ward, S. M. Smith & J. Vaid (Eds.), Creative thought: an investigation of conceptual structures and processes (pp. 267–307). Washington: American Psychological Association.

Bergson, H. (1911). Creative evolution. New York: Henry Holt, and Company.

Bird, J., & Di Paolo, E. (2008). Gordon Pask and his maverick machines. In P. Husbands, O. Holland & M. Wheeler (Eds.), The mechanical mind in history (pp. 185–211). Cambridge: MIT Press.

Boden, M. A. (1990a). The creative mind. London: George Weidenfeld and Nicolson Ltd.

Boden, M. A. (1994). Dimensions of creativity. Cambridge: MIT Press.

Boden, M. A. (1994b). What is creativity? In M. A. Boden (Ed.), Dimensions of creativity (pp. 75–117). Cambridge: MIT Press.

Boden, M. A. (2006). Mind as machine: a history of cognitive science. Oxford: Oxford University Press.

Broad, C. D. (1925). The mind and its place in nature. New York: Harcourt, Brace and Co.

Brooks, R. A. (1999). Cambrian intelligence: the early history of the new AI. Cambridge: MIT Press.

Carello, C., Turvey, M., Kugler, P. N., & Shaw, R. E. (1984). Inadequacies of the computer metaphor. In M. S. Gazzaniga (Ed.), Handbook of cognitive neuroscience (pp. 229–248). New York: Plenum.

Cariani, P. (1989). On the design of devices with emergent semantic functions. PhD, State University of New York at Binghamton, Binghamton, New York.

Cariani, P. (1992). Emergence and artificial life. In C. Langton, C. Taylor, J. Farmer & S. Rasmussen (Eds.), Santa Fe institute studies in the science of complexity: Vol. X. Artificial life II (pp. 775–798). Redwood: Addison-Wesley.

Cariani, P. (1993). To evolve an ear: epistemological implications of Gordon Pask’s electrochemical devices. Systems Research, 10(3), 19–33.

Cariani, P. (1995). As if time really mattered: temporal strategies for neural coding of sensory information. Communication and Cognition—Artificial Intelligence (CC-AI), 12(1–2), 161–229. Reprinted in: K. Pribram (Ed.) (1994). Origins: brain and self-organization (pp. 208–252). Hillsdale: Lawrence Erlbaum.

Cariani, P. (1997). Emergence of new signal-primitives in neural networks. Intellectica, 1997(2), 95–143.

Cariani, P. (1998). Towards an evolutionary semiotics: the emergence of new sign-functions in organisms and devices. In G. Van de Vijver, S. Salthe & M. Delpos (Eds.), Evolutionary systems (pp. 359–377). Dordrecht: Kluwer.

Cariani, P. (1999). Temporal coding of periodicity pitch in the auditory system: an overview. Neural Plasticity, 6(4), 147–172.

Cariani, P. (2000). Regenerative process in life and mind. In J. L. R. Chandler & G. Van de Vijver (Eds.), Annals of the New York academy of sciences: Vol. 901. Closure: emergent organizations and their dynamics, New York (pp. 26–34).

Cariani, P. (2001a). Neural timing nets. Neural Networks, 14(6–7), 737–753.

Cariani, P. (2001b). Symbols and dynamics in the brain. Biosystems, 60(1–3), 59–83.

Cariani, P. (2001c). Temporal coding of sensory information in the brain. Acoustical Science and Technology, 22(2), 77–84.

Cariani, P. (2002). Extradimensional bypass. Biosystems, 64(1–3), 47–53.

Cariani, P. (2004). Temporal codes and computations for sensory representation and scene analysis. IEEE Transactions on Neural Networks, Special Issue on Temporal Coding for Neural Information Processing, 15(5), 1100–1111.

Cariani, P. (2011). The semiotics of cybernetic percept-action systems. International Journal of Signs and Semiotic Systems, 1(1), 1–17.

Cariani, P. A., & Delgutte, B. (1996). Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. II. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch. J. Neurophysiology, 76.

Cariani, P., & Micheyl, C. (2012). Towards a theory of infomation processing in the auditory cortex. In D. Poeppel, T. Overath & A. Popper (Eds.), Human auditory cortex: Springer handbook of auditory research (pp. 351–390). New York: Springer.

Carpenter, G., & Grossberg, S. (2003). Adaptive resonance theory. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 87–90). Cambridge: MIT Press.

Chen, J.-C., & Conrad, M. (1994). A multilevel neuromolecular architecture that uses the extradimensional bypass principle to facilitate evolutionary learning. Physica D, 75, 417–437.

Chung, S., Raymond, S., & Lettvin, J. (1970). Multiple meaning in single visual units. Brain, Behavior and Evolution, 3, 72–101.

Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. Cambridge: MIT Press.

Clayton, P. (2004). Mind and emergence: from quantum to consciousness. Oxford: Oxford University Press.

Conrad, M. (1998). Towards high evolvability dynamics. In G. Van de Vijver, S. Salthe & M. Delpos (Eds.), Evolutionary systems (pp. 33–43). Dordrecht: Kluwer.

de Latil, P. (1956). Thinking by machine. Boston: Houghton Mifflin.

Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition, 79(1–2), 1–37.

Emmers, R. (1981). Pain: a spike-interval coded message in the brain. New York: Raven Press.

Fodor, J. (1980). On the impossibility of acquiring “more powerful” structures: fixation of belief and knowledge acquisition. In M. Piatelli-Palmarini (Ed.), Language and learning: the debate between Jean Piaget and Noam Chomsky (pp. 142–162). Cambridge: Harvard.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution. New York: Wiley.

Goodman, N. (1972). A world of individuals. In N. Goodman (Ed.), Problems and projects (pp. 155–172). Indianapolis: Bobbs-Merrill. Originally appeared in The Problem of Universals, Notre Dame Press, 1956.

Grossberg, S. (1988). The adaptive brain, Vols I. and II. New York: Elsevier.

Hebb, D. O. (1949). The organization of behavior. New York: Simon and Schuster.

Hodges, A. (2008). What did Alan Turing mean by “machine”? In P. Husbands, O. Holland & M. Wheeler (Eds.), The mechanical mind in history (pp. 75–90). Cambridge: MIT Press.

Holland, J. (1998). Emergence. Reading: Addison-Wesley.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press.

Horgan, T., & Tienson, J. (1996). Connectionism and the philosophy of psychology. Cambridge: MIT Press.

Izhikevich, E. M. (2006). Polychronization: computation with spikes. Neural Computation, 18(2), 245–282.

John, E. R. (1967). Electrophysiological studies of conditioning. In G. C. Quarton, T. Melnechuk & F. O. Schmitt (Eds.), The neurosciences: a study program (pp. 690–704). New York: Rockefeller University Press.

John, E. R. (1972). Switchboard vs. statistical theories of learning and memory. Science, 177, 850–864.

Kampis, G. (1991). Self-modifying systems in biology and cognitive science. Oxford: Pergamon Press.

Kanerva, P. (1988). Sparse distributed memory. Cambridge: MIT Press.

Kilmer, W., & McCulloch, W. (1969). The reticular formation command and control system. In K. Leibovic (Ed.), Information processing in the nervous system (pp. 297–307). New York: Springer.

Kim, J. (1998). Mind in a physical world: an essay on the mind-body problem and mental causation. Cambridge: MIT Press.

Kim, J. (2008). Making sense of emergence. In M. Bedau & P. Humphreys (Eds.), Emergence: contemporary readings in philosophy and science (pp. 127–153). Cambridge: MIT Press.

Koch, C. (2004). The quest for consciousness: a neurobiological approach. Denver: Roberts and Co.

Machotka, P. (1980). Daniel Berlyne’s contributions to empirical aesthetics. Motivation and Emotion, 4, 113–121.

MacKay, D. G. (1987). The organization of perception and action. New York: Springer.

Marcus, G. F. (2001). The algebraic mind. Cambridge: MIT Press.

Maruyama, M. (1977). Heterogenistics: an epistemological restructuring of biological and social sciences. Cybernetica, 20, 69–86.

Maturana, H. R. (1981). Autopoiesis. In M. Zeleny (Ed.), Autopoiesis: a theory of the living. New York: North Holland.

Maturana, H., & Varela, F. (1973). Autopoiesis: the organization of the living. In H. Maturana & F. Varela (Eds.), Boston studies in the philosophy of science: Vol. 42. Autopoiesis and cognition (1980). Dordrecht: Reidel.

McCulloch, W. S. (1965). Embodiments of mind. Cambridge: MIT Press.

Miller, R. (2000). Time and the brain, conceptual advances in brain research. Australia: Harwood Academic Publishers/Gordon and Breach.

Mingers, J. (1995). Self-producing systems. New York: Plenum Press.

Morgan, L. (1931). Emergent evolution (3rd ed.). New York: Henry Holt.

Morrell, F. (1967). Electrical signs of sensory coding. In G. Quarton, T. Melnechuck, & F. Schmitt (Eds.), The neurosciences: a study program (pp. 452–469). New York: Rockefeller University Press.

Morris, C. (1946). Signs, language, and behavior. New York: George Braziller.

Mountcastle, V. (1967). The problem of sensing and the neural coding of sensory events. In G. Quarton, T. Melnechuk & F. Schmitt (Eds.), The neurosciences: a study program. New York: Rockefeller University Press.

Nöth, W. (1990). Handbook of semiotics. Indianapolis: Indiana University Press.

Orbach, J. (1998). The neuropsychological theories of Lashley and Hebb. Lanham: University Press of America.

Pask, G. (1959). Physical analogues to the growth of a concept (pp. 765–794). London: H.M.S.O.

Pask, G. (1960). The natural history of networks. In M. Yovits & S. Cameron (Eds.), Self-Organizing systems. Proceedings of an interdisciplinary conference, May 5–6, 1959 (pp. 232–263). New York: Pergamon Press.

Pask, G. (1961). An approach to cybernetics. Science today series. New York: Harper and Brothers.

Pattee, H. H. (1982). Cell psychology: an evolutionary view of the symbol-matter problem. Cognition and Brain Theory, 5, 325–341.

Pattee, H. H. (1996). The problem of observables in models of biological organizations. In E. L. Khalil & K. E. Boulding (Eds.), Evolution, order, and complexity (pp. 249–264). London: Routledge.

Pattee, H. H. (2008). The necessity of biosemiotics: matter-symbol complementarity. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 115–132). Dordrecht: Springer.

Pepper, S. C. (1942). World hypotheses, a study in evidence. Berkeley: University of California Press.

Perkell, D., & Bullock, T. (1968). Neural coding. Neurosciences Research Program Bulletin, 6(3), 221–348.

Piaget, J. (1980). The psychogenesis of knowledge and its epistemological significance. In M. Piatelli-Palmarini (Ed.), Language and learning. The debate between Jean Piaget and Noam Chomsky (pp. 23–34). Cambridge: Harvard University Press.

Piatelli-Palmarini, M. (1980). How hard is the hard core of a scientific paradigm? In M. Piatelli-Palmarini (Ed.), Language and learning. The debate between Jean Piaget and Noam Chomsky. Cambridge: Harvard University Press.

Pickering, A. (2010). The cybernetic brain: sketches of another future. Chicago: University of Chicago Press.

Powers, W. (1973). Behavior: the control of perception, New York: Aldine.

Pratt, G. (1990). Pulse computation. PhD, M.I.T.

Raymond, S., & Lettvin, J. (1978). Aftereffects of activity in peripheral axons as a clue to nervous coding. In S. Waxman (Ed.), Physiology and pathobiology of axons. New York: Raven Press.

Redgrave, P. (2007). Basal ganglia. Scholarpedia, 2(6), 1825.

Rocha, L. (1996). Eigen-states and symbols. Systems Research, 13(3), 371–384.;2-U

Rose, D. (2006). Consciousness. Philosophical, psychological, and neural theories. Oxford: Oxford University Press.

Rosen, R. (1985). Anticipatory systems. Oxford: Pergamon Press.

Rosen, R. (1991). Life itself. New York: Columbia University Press.

Singer, W. (1999). Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24(1), 49–65. 111–125.

Skrbina, D. (2005). Panpsychism in the west. Cambridge: MIT Press.

Sommerhoff, G. (1974). Logic of the living brain. London: Wiley.

Stewart, J. (2000). From autopoiesis to semantic closure. Annals of the New York Academy of Sciences, 901, 155–162.

Stewart, R. M. (1969). Electrochemically active field-trainable pattern recognition systems. IEEE Transactions on Systems Science and Cybernetics, SSC-5(3), 230–237.

Thatcher, R. W., & John, E. R. (1977). Functional neuroscience, Vol. I. Foundations of cognitive processes. Hillsdale: Lawrence Erlbaum.

Turing, A. (1939). Systems of logic based on ordinals. Proceedings of the London Mathematical Society, 45(2), 161–228.

van Fraassen, B. C. (1980). The scientific image. Oxford: Oxford University Press.

Varela, F. (1979). Principles of biological autonomy. New York: North Holland.

von Foerster, H. (2003). Understanding understanding: essays on cybernetics and cognition. New York: Springer.

von Glasersfeld, E. (1992). Aspects of constructivism: Vico, Berkely, Piaget. In M. Ceruti (Ed.), Evoluzione e conoscenza, Lubrina, Bergamo, Italy (pp. 421–432). Reprinted in von Glasersfeld, Key works of radical constructivism (pp. 421–429).

von Glasersfeld, E. (2007). Cybernetics and the theory of knowledge. In M. Larochelle (Ed.), Key works in radical constructivism (pp. 153–169). Rotterdam: Sense Publishers.

von Neumann, J. (1951). The general and logical theory of automata, in. In L. A. Jeffress (Ed.), Cerebral mechanisms of behavior (the Hixon symposium) (pp. 1–41). New York: Wiley.

Wasserman, G. S. (1992). Isomorphism, task dependence, and the multiple meaning theory of neural coding. Biological Signals, 1, 117–142.


Full Text

intern file

Sonstige Links