Creative ecosystems

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche

Reference

McCormack, J.: Creative ecosystems. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, ch. 2, pp. 39–60. Springer, Heidelberg (2012).

DOI

http://dx.doi.org/10.1007/978-3-642-31727-9_2

Abstract

Traditional evolutionary approaches to computer creativity focus on optimisation, that is they define some criteria that allows the ranking of individuals in a population in terms of their suitability for a particular task. The problem for creative applications is that creativity is rarely thought of as a single optimisation. For example, could you come up with an algorithm for ranking music or painting? The difficulty is that these broad categories are shifting and subjective: I might argue that Mozart is more musically creative than Lady Gaga, but others may disagree. Objective, fine-grained ranking of all possible music is impossible, even for humans. I will show how reconceptualising the exploration of a creative space using an “ecosystemic” approach can lead to more open and potentially creative possibilities. For explanatory purposes, I will use some successful examples that are simple enough to explain succinctly, yet still exhibit the features necessary to demonstrate the advantages of this approach.

Extended Abstract

Bibtex

@incollection{
year={2012},
isbn={978-3-642-31726-2},
booktitle={Computers and Creativity},
editor={McCormack, Jon and d’Inverno, Mark},
doi={10.1007/978-3-642-31727-9_2},
title={Creative Ecosystems},
url={http://dx.doi.org/10.1007/978-3-642-31727-9_2 http://de.evo-art.org/index.php?title=Creative_ecosystems },
publisher={Springer Berlin Heidelberg},
author={McCormack, Jon},
pages={39-60},
language={English}
}

Used References

Aunger, R. (2002). The electric meme: a new theory of how we think. New York: Free Press.

Baluja, S., Pomerleau, D., & Jochem, T. (1994). Simulating user’s preferences: towards automated artificial evolution for computer generated images. Connection Science, 6, 325–354. http://dx.doi.org/10.1080/09540099408915729

Basalla, G. (1998). The evolution of technology. Cambridge: Cambridge University Press.

Begon, M., Townsend, C., & Harper, J. (2006). Ecology: from individuals to ecosystems. New York: Wiley-Blackwell.

Bell, S. (1999). Landscape: pattern, perception and process. London: E & F N Spon.

Bentley, P. J., & Corne, D. W. (Eds.) (2002). Creative evolutionary systems. London: Academic Press.

Bird, J., Husbands, P., Perris, M., Bigge, B., & Brown, P. (2008). Implicit fitness functions for evolving a drawing robot. In M. Giacobini et al. (Eds.), Lecture notes in computer science: Vol. 4974. Applications of evolutionary computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Proceedings, Naples, Italy, March 26–28, 2008 (pp. 473–478). Berlin: Springer.

Birkhoff, G. D. (1933). Aesthetic measure. Cambridge: Harvard University Press.

Boden, M. A. (2010). Creativity and art: three roads to surprise. London: Oxford University Press.

Bown, O., & McCormack, J. (2010). Taming nature: tapping the creative potential of ecosystem models in the arts. Digital Creativity, 21(4), 215–231. http://www.csse.monash.edu.au/~jonmc/resources/DC2010/. http://dx.doi.org/10.1080/14626268.2011.550029

Brown, D. E. (1991). Human universals. New York: McGraw-Hill.

Dahlstedt, P. (2006). A mutasynth in parameter space: interactive composition through evolution. Organised Sound, 6(2), 121–124.

Dawkins, R. (1999). The extended phenotype: the long reach of the gene (rev. ed.). Oxford: Oxford University Press.

De Landa, M. (2000). A thousand years of nonlinear history. Cambridge: MIT Press.

Di Scipio, A. (2003). ‘Sound is the interface’: from interactive to ecosystemic signal processing. Organised Sound, 8(3), 269–277. http://dx.doi.org/10.1017/S1355771803000244

Dissanayake, E. (1995). Homo aestheticus: where art comes from and why. Seattle: University of Washington Press.

Dorin, A. (2001). Aesthetic fitness and artificial evolution for the selection of imagery from the mythical infinite library. In J. Kelemen & P. Sosík (Eds.), LNAI: Vol. 2159. Advances in artificial life (pp. 659–668). Prague: Springer. http://www.csse.monash.edu.au/~aland/PAPERS/aestheticFitness_ECAL2001.pdf. http://dx.doi.org/10.1007/3-540-44811-X_76

Driessens, E., & Verstappen, M. (2008). Natural processes and artificial procedures. In P. F. Hingston, L. C. Barone & Z. Michalewicz (Eds.), Natural computing series. Design by evolution: advances in evolutionary design (pp. 101–120). Berlin: Springer. http://dx.doi.org/10.1007/978-3-540-74111-4_7

Dutton, D. (2002). Aesthetic universals. In B. Gaut & D. M. Lopes (Eds.), The Routledge companion to aesthetics. London: Routledge. http://www.denisdutton.com/universals.htm.

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Natural computing series. Berlin: Springer.

Eldridge, A. C., & Dorin, A. (2009). Filterscape: energy recycling in a creative ecosystem. In M. Giacobini et al. (Eds.), Lecture notes in computer science: Vol. 5484. Applications of evolutionary computing, EvoWorkshops 2009: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG, Proceedings, Tübingen, Germany, April 15–17, 2009 (pp. 508–517). Berlin: Springer.

Eldridge, A. C., Dorin, A., & McCormack, J. (2008). Manipulating artificial ecosystems. In M. Giacobini et al. (Eds.), Lecture notes in computer science: Vol. 4974. Applications of evolutionary computing,EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Proceedings, Naples, Italy, March 26–28, 2008 (pp. 392–401). Berlin: Springer.

Fuller, M. (2005). Media ecologies: materialist energies in art and technoculture. Cambridge: MIT Press.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. M. (1995). Design patterns: elements of reusable object-oriented software. Addison-Wesley professional computing series. Reading: Addison-Wesley.

Harvey, I. (2004). Homeostasis and rein control: from daisyworld to active perception. In J. B. Pollack, M. A. Bedau, P. Husbands, T. Ikegami & R. A. Watson (Eds.), Ninth international conference on artificial life (pp. 309–314). Cambridge: MIT Press.

Kaplinsky, J. (2006). Biomimicry versus humanism. Architectural Design, 76(1), 66–71. http://dx.doi.org/10.1002/ad.212

Keane, A. J., & Brown, S. M. (1996). The design of a satellite boom with enhanced vibration performance using genetic algorithm techniques. In I. C. Parmee (Ed.), Conference on adaptive computing in engineering design and control 96, P.E.D.C. (pp. 107–113).

Koren, L. (2010). Which “Aesthetics” do you mean?: ten definitions. Imperfect Publishing.

Lenton, T. M., & Lovelock, J. E. (2001). Daisyworld revisited: quantifying biological effects on planetary self-regulation. Tellus, 53B(3), 288–305.

Luke, S. (2009). Essentials of metaheuristics. Lulu Publishing, Department of Computer Science, George Mason University

Lumsden, C. J. (1999). Evolving creative minds: stories and mechanisms. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 153–169). Cambridge: Cambridge University Press. Chap. 8.

Machado, P., & Cardoso, A. (2002). All the truth about NEvAr. Applied Intelligence, 16(2), 101–118. http://dx.doi.org/10.1023/A:1013662402341

Machado, P., Romero, J., & Manaris, B. (2008). Experiments in computational aesthetics. In J. Romero & P. Machado (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 381–415). Berlin: Springer.

Martindale, C. (1999). Biological bases of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 137–152). Cambridge: Cambridge University Press. Chap. 7.

McCormack, J. (2001). Eden: an evolutionary sonic ecosystem. In Lecture notes in computer science: Vol. 2159. Advances in artificial life, proceedings of the sixth European conference, ECAL (pp. 133–142).

McCormack, J. (2005). On the evolution of sonic ecosystems. In Artificial life models in software (pp. 211–230). London: Springer. http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-40007-22-39144451-0,00.html. 404 http://dx.doi.org/10.1007/1-84628-214-4_9

McCormack, J. (2007a). Artificial ecosystems for creative discovery. In Proceedings of the 9th annual conference on genetic and evolutionary computation (GECCO 2007) (pp. 301–307). New York: ACM. http://dx.doi.org/10.1145/1276958.1277017

McCormack, J. (2007b). Creative ecosystems. In A. Cardoso & G. Wiggins (Eds.), Proceedings of the 4th international joint workshop on computational creativity (pp. 129–136).

McCormack, J. (2008a). Evolutionary L-systems. In P. F. Hingston, L. C. Barone & Z. Michalewicz (Eds.), Natural computing series. Design by evolution: advances in evolutionary design (pp. 168–196). Berlin: Springer.

McCormack, J. (2008b). Facing the future: evolutionary possibilities for human-machine creativity. In P. Machado & J. Romero (Eds.), The art of artificial evolution: a handbook on evolutionary art and music (pp. 417–451). Berlin: Springer.

McCormack, J. (2010). Enhancing creativity with niche construction. In H. Fellerman et al. (Eds.), Artificial life XII (pp. 525–532). Cambridge: MIT Press.

McCormack, J., Dorin, A., & Innocent, T. (2004). Generative design: a paradigm for design research. In J. Redmond, D. Durling, & A. de Bono (Eds.), Futureground, vol. 1: abstracts, 2: proceedings (p. 156). Melbourne: Design Research Society.

Murray, S. (2011). Design ecologies: editorial. Design Ecologies, 1(1), 7–9. http://dx.doi.org/10.1386/des.1.1.7_2

Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: the neglected process in evolution. Monographs in population biology. Princeton: Princeton University Press.

Perkins, D. N. (1996). Creativity: beyond the Darwinian paradigm. In M. Boden (Ed.), Dimensions of creativity (pp. 119–142). Cambridge: MIT Press. Chap. 5.

Ramachandran, V. S. (2003). The emerging mind. In Reith lectures; 2003. London: BBC in association with profile Books.

Ramachandran, V. S., & Hirstein, W. (1999). The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies, 6, 15–51.

Romero, J., & Machado, P. (Eds.) (2008). The art of artificial evolution: a handbook on evolutionary art and music. Natural computing series. Berlin: Springer.

Scheiner, S. M., & Willig, M. R. (2008). A general theory of ecology, Theoretical Ecology 1, 21–28. http://dx.doi.org/10.1007/s12080-007-0002-0

Shapshak, T. (2011). Why Nokia got into bed with Microsoft. http://www.bizcommunity.com/Article/410/78/57030.html.

Staudek, T. (2002). Exact aesthetics. Object and scene to message. PhD thesis, Faculty of Informatics, Masaryk University of Brno.

Svangåard, N., & Nordin, P. (2004). Automated aesthetic selection of evolutionary art by distance based classification of genomes and phenomes using the universal similarity metric. In G. R. Raidl, S. Cagnoni, J. Branke, D. Corne, R. Drechsler, Y. Jin, C. G. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. D. Smith & G. Squillero (Eds.), Lecture notes in computer science: Vol. 3005. EvoWorkshops 2004 (pp. 447–456). Berlin: Springer.

Takagi, H. (2001). Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proceedings of the IEEE, 89, 1275–1296. http://dx.doi.org/10.1109/5.949485

Tansley, A. G. (1939). British ecology during the past quarter-century: the plant community and the ecosystem. Journal of Ecology, 27(2), 513–530. http://dx.doi.org/10.2307/2256377

Waters, S. (2007). Performance ecosystems: ecological approaches to musical interaction. In EMS07—the ‘languages’ of electroacoustic music, Leicester.

Willis, A. J. (1997). The ecosystem: an evolving concept viewed historically. Functional Ecology, 11(2), 268–271. http://dx.doi.org/10.1111/j.1365-2435.1997.00081.x

Wilson, S. W. (1999). State of XCS classifier system research (Technical report). Concord, MA.


Links

Full Text

http://www.csse.monash.edu.au/~jonmc/research/Papers/EcoCreativity.pdf

intern file

Sonstige Links

http://jonmccormack.info/~jonmc/sa/research/creative-ecosystems/