Detecting people in cubist art
Inhaltsverzeichnis
Reference
Shiry Ginosar, Daniel Haas, Timothy Brown, Jitendra Malik: Detecting people in cubist art. arXiv preprint arXiv:1409.6235 (2014)
DOI
Abstract
Although the human visual system is surprisingly robust to extreme distortion when recognizing objects, most evaluations of computer object detection methods focus only on robustness to natural form deformations such as people's pose changes. To determine whether algorithms truly mirror the flexibility of human vision, they must be compared against human vision at its limits. For example, in Cubist abstract art, painted objects are distorted by object fragmentation and part-reorganization, to the point that human vision often fails to recognize them. In this paper, we evaluate existing object detection methods on these abstract renditions of objects, comparing human annotators to four state-of-the-art object detectors on a corpus of Picasso paintings. Our results demonstrate that while human perception significantly outperforms current methods, human perception and part-based models exhibit a similarly graceful degradation in object detection performance as the objects become increasingly abstract and fragmented, corroborating the theory of part-based object representation in the brain.
Extended Abstract
Bibtex
@article{DBLP:journals/corr/GinosarHBM14, author = {Shiry Ginosar and Daniel Haas and Timothy Brown and Jitendra Malik}, title = {Detecting People in Cubist Art}, journal = {CoRR}, volume = {abs/1409.6235}, year = {2014}, url = {http://arxiv.org/abs/1409.6235, http://de.evo-art.org/index.php?title=Detecting_people_in_cubist_art }, timestamp = {Wed, 01 Oct 2014 15:00:04 +0200}, biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/GinosarHBM14}, bibsource = {dblp computer science bibliography, http://dblp.org} }
Used References
1. Akselrod-Ballin, A., Ullman, S.: Distinctive and compact features. Image and Vi- sion Computing 26(9), 1269{1276 (September 2008)
2. Bourdev, L., Malik, J.: Poselets: Body part detectors trained using 3D human pose annotations. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). pp. 1365{1372 (2009)
3. Bourdev, L.D., Maji, S., Brox, T., Malik, J.: Detecting People Using Mutually Consistent Poselet Activations. In: Proceedings of the European Conference on Computer Vision (ECCV). pp. 168{181 (2010)
4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). vol. 2, pp. 886{893 (2005)
5. Doersch, C., Singh, S., Gupta, A., Sivic, J., Efros, A.A.: What makes paris look like paris? ACM Transactions on Graphics (SIGGRAPH) 31(4) (2012)
6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2010 (VOC2010) Results. http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
7. Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. Pattern Analysis and Machine Intelligence (PAMI) 32(9) (2010)
8. Freiwald, W.A., Tsao, D.Y., Livingstone, M.S.: A Face Feature Space in the Macaque Temporal Lobe. Nature Neuroscience 12(9), 1187{1196 (Sep 2009)
9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac- curate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
10. Girshick, R.B., Felzenszwalb, P.F., McAllester, D.: Discriminatively trained deformable part models, release 5. http://people.cs.uchicago.edu/~rbg/latent-release5/
11. Grill-Spector, K., Kushnir, T., Hendler, T.: A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping 6(4), 316{ 328 (1998)
12. Hsiao, E., Efros, A.A.: DPM superhuman. http://www.cs.cmu.edu/~efros/courses/LBMV09/presentations/latent_presentation.pdf slides 43-51
13. Ishai, A., Fairhall, S.L., Pepperell, R.: Perception, memory and aesthetics of inde- terminate art. Brain Research Bulletin 73(46), 319 { 324 (2007)
14. Laporte, P.M.: Cubism and science. The Journal of Aesthetics and Art Criticism 7(3), pp. 243{256 (1949)
15. Lewis, M.B., Edmonds, A.J.: Face detection: Mapping human performance. Per- ception 32(8), 903{920 (2003)
16. Nelson, R.C., Selinger, A.: A Cubist Approach to Object Recognition. In: Pro- ceedings of the IEEE International Conference on Computer Vision (ICCV). pp. 614{621 (1998)
17. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. In: International Conference on Learning Representations (ICLR 2014). CBLS (2014)
18. Singh, S., Gupta, A., Efros, A.A.: Unsupervised discovery of mid-level discrimi- native patches. In: Proceedings of the European Conference on Computer Vision (ECCV) (2012)
19. Sinha, P., Torralba, A.: Detecting faces in impoverished images. Journal of Vision 2(7) (November 2002)
20. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.J., Fergus, R.: Intriguing properties of neural networks. CoRR abs/1312.6199 (2013)
21. Tsao, D.Y., Livingstone, M.S.: Mechanisms of face perception. Annual Review of Neuroscience 31, 411{437 (2008)
22. Ullman, S., Vidal-Naquet, M., Sali, E.: Visual features of intermediate complexity and their use in classi�cation. Nature Neuroscience 5(7), 682{687 (Jul 2002)
23.Vogels, R.: E�ect of image scrambling on inferior temporal cortical responses. Neu- roreport 10(9), 1811{1816 (Jun 1999)
24. Vondrick, C., Khosla, A., Malisiewicz, T., Torralba, A.: HOGgles: Visualizing Ob- ject Detection Features. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2013)
25. Wiesmann, M., Ishai, A.: Training facilitates object recognition in cubist paintings. Frontiers in Human Neuroscience 4, 11 (2010)
Links
Full Text
http://arxiv.org/pdf/1409.6235v1