Evolved diffusion limited aggregation compositions
Inhaltsverzeichnis
Reference
Greenfield, Gary: Evolved diffusion limited aggregation compositions. In: EvoMUSART 2008, S. 402-411.
DOI
http://link.springer.com/10.1007/978-3-540-78761-7_43
Abstract
Diffusion limited aggregation (DLA) is a simulation technique for modeling dendritic growth. It has seen limited use for artistic purposes. We consider an evolutionary scheme for evolving DLA compositions with multiple seed particles. As a consequence we are led to consider robustness and stability issues related to the use of evolutionary computation whose phenotypes invoke inherently random processes.
Extended Abstract
Bibtex
@incollection{ year={2008}, isbn={978-3-540-78760-0}, booktitle={Applications of Evolutionary Computing}, volume={4974}, series={Lecture Notes in Computer Science}, editor={Giacobini, Mario and Brabazon, Anthony and Cagnoni, Stefano and Di Caro, GianniA. and Drechsler, Rolf and Ekárt, Anikó and Esparcia-Alcázar, AnnaIsabel and Farooq, Muddassar and Fink, Andreas and McCormack, Jon and O’Neill, Michael and Romero, Juan and Rothlauf, Franz and Squillero, Giovanni and Uyar, A.Şima and Yang, Shengxiang}, doi={10.1007/978-3-540-78761-7_43}, title={Evolved Diffusion Limited Aggregation Compositions}, url={http://dx.doi.org/10.1007/978-3-540-78761-7_43 http://de.evo-art.org/index.php?title=Evolved_diffusion_limited_aggregation_compositions }, publisher={Springer Berlin Heidelberg}, author={Greenfield, Gary}, pages={402-411}, language={English} }
Used References
Batty, M.: Cities and Complexity. MIT Press, Cambridge (2005)
Bourke, P.: Constrained limited diffusion aggregation in 3 dimensions. Computers and Graphics 30(4), 646–649 (2006)
Bourke, P.: Diffusion Limited Aggregtion (accessed March 2007) (2007), http://local.wasp.uwa.edu.au/~pbourke/fractals/dla/
Casselman, B.: About the cover Aggregation 22. Notices of the American Mathematical Society 54(6), 800 (2007)
Gaylord, R., Tyndall, W.: Diffusion limited aggregation. Mathematica in Education 1(3), 6–10 (1992) (accessed October 2007), http://library.wolfram.com/infocenter/Articles/2866/
Greenfield, G.: Composite diffusion limited aggregation paintings. In: Sarhangi, R., Barrallo, J. (eds.) BRIDGES 2007 Conference Proceedings, pp. 15–20 (2007)
Halsey, T.: Diffusion-limited aggregation: a model for pattern formation. Physics Today 53(11), 36–47 (2000) (accessed October 2007), http://www.physicstoday.org/pt/vol-53/iss-11/p36.html
Kobayashi, Y., Niitsu, T., Takahashi, K., Shimoida, S.: Mathematical modeling of metal leaves. Mathematics Magazine 76(4), 295–298 (2003)
Lomas, A.: 2006 Bridges Exhibit of Mathematical Art, London (2006) (accessed October, 2007), http://www.bridgesmathart.org/art-exhibits/bridges06/lomas.html
Lomas, A.: Private communication (2006)
Long, J.: Modeling dendritic structures for artistic effects. MSc. Thesis University of Saskatchewan (2007) (accessed October 2007), http://www.cs.usask.ca/grads/jsl847/
Ramachandran, V., Hirstein, W.: The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies 6(1–2), 15–52 (1999)
Silvers, R.: Photomosiacs. Henry Holt and Company, New York (1997)
Voss, R.: Fractals in nature: From characterization to simulation. In: Peitgen, H., Saupe, D. (eds.) The Science of Fractal Images, pp. 36–38. Springer, New York (1988)
Witten, T., Sander, L.: Diffusion-limited aggregation, a kinematic critical phenomenon. Physical Review Letters 47, 1400–1403 (1981)
Zeki, S.: Inner Vision, An Exploration of Art and the Brain. Oxford University Press, New York (1999)
Links
Full Text
[extern file]