Evolving Novel Image Features Using Genetic Programming-Based Image Transforms

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Taras Kowaliw and Wolfgang Banzhaf and Nawwaf Kharma and Simon Harding: Evolving Novel Image Features Using Genetic Programming-Based Image Transforms. 2009 IEEE Congress on Evolutionary Computation, pp. 2502-2507, IEEE Press, 18-21 May 2009.




In this paper, we use Genetic Programming (GP) to define a set of transforms on the space of greyscale images. The motivation is to allow an evolutionary algorithm means of transforming a set of image patterns into a more classifiable form. To this end, we introduce the notion of a transform-based evolvable feature (TEF), a moment value extracted from a GP-transformed image, used in a classification task. Unlike many previous approaches, the TEF allows the whole image space to be searched and augmented. TEFs are instantiated through Cartesian Genetic Programming, and applied to a medical image classification task, that of detecting muscular dystrophy-indicating inclusions in cell images. It is shown that the inclusion of a single TEF allows for significantly superior classification relative to predefined features alone.

Extended Abstract


Used References

N. Kharma, T. Kowaliw, E. Clement, C. Jensen, A. Youssef, and J. Yao, "Project cellnet: Evolving an autonomous pattern recognizer," International Journal of Pattern Recognition and Artificial Intelligence, vol.18, no.6, pp. 1039-1056, 2004. http://dx.doi.org/10.1142/S0218001404003587

W. Street, W. Wolberg, and O. Mangasarian, "Nuclear feature extraction for breast tumor diagnosis," in IS&T/SPIE 1993 International Symposium on Electronic Imaging, 1993. http://dx.doi.org/10.1117/12.148698

M. K. Hu, "Visual pattern recognition by moment invariants," IRE Transactions on Information Theory, vol.IT-8, pp. 179-187, 1962. http://dx.doi.org/10.1109/TIT.1962.1057692

M. Smith and L. Bull, "Using genetic programming for feature creation with a genetic algorithm feature selector," in Parallel Problem Solving from Nature - PPSN VIII, 2004. http://dx.doi.org/10.1007/978-3-540-30217-9_117

P. Gader and M. Khabou, "Automatic feature generation for handwritten digit recognition," IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.18, no.12, 1996. http://dx.doi.org/10.1109/34.546262

A. M. Gillies, "Automatic generation of morphological template features," in Proceedings of SPIE - The International Society for Optical Engineering, vol.1350, 1990, pp. 252-261. http://dx.doi.org/10.1117/12.23593

F. W. M. Stentiford, "Automatic feature design for optical character recognition using an evolutionary search procedure," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.PAMI-7, no.3, pp. 350-355, 1985. http://dx.doi.org/10.1109/TPAMI.1985.4767665

L. Uhr and C. Vossler, "A pattern -recognition program that generates, evaluates and adjusts its own operators," in Computers and Thought. McGraw-Hill, 1963. http://dx.doi.org/10.1145/1460690.1460751

E. I. Chang, R. P. Lippmann, and D. W. Tong, "Using genetic algorithms to select and create features pattern classification," in IJCNN International Joint Conference, vol.3, 1990, pp. 747-753. http://dx.doi.org/10.1109/IJCNN.1990.137927

P. Chen, T. Toyota, and Z. He, "Automated function generation of symptom parameters and application to fault diagnosis of machinery under variable operating conditions," IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, vol.31, no.6, pp. 775-781, 2001. http://dx.doi.org/10.1109/3468.983436

H. Guo, L. Jack, and A. Nandi, "Feature generation using genetic programming with application to fault classification," IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics, vol.35, no.1, 2005. http://dx.doi.org/10.1109/TSMCB.2004.841426

. Andre, "Automatically defined features: The simultaneous evolution of 2-dimensional feature detectors and an algorithm for using them," in Advances in Genetic Programming, K. E. Kinnear, Ed. MIT Pres, 1994.

J. Koza, "Simultaneous discovery of detectors and a way of using the detectors via genetic programming," in IEEE International Conference on Neural Networks, vol.3, 1993, pp. 1794-1801. http://dx.doi.org/10.1109/ICNN.1993.298829

M. M. Rizki, M. A. Zmuda, and L. A. Tamburino, "Evolving pattern recognition systems," IEEE Transactions on Evolutionary Computation, vol.6, no.6, pp. 594-609, 2002.

T. Kowaliw, N. Kharma, C. Jensen, H. Moghnieh, and J. Yao, "Using competetive co-evolution to evolve better pattern recognizers," International Journal of Computational Intelligence and Applications, vol.5-3, pp. 305-320, 2005. http://dx.doi.org/10.1142/S1469026805001441

J. F. Miller and P. Thomson, "Cartesian genetic programming," in Proc. EuroGP 2000, ser. LNCS, R. Poli, W. Banzhaf, W. B. Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty, Eds., vol.1802. Springer-Verlag, 2000, pp. 121-132.

R. Poli, "Parallel distributed genetic programming," in New Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds. McGraw-Hill, 1999.

W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming - An Introduction. On the Automatic Evolution of Computer Programs and its Application. Morgan Kaufmann, 1998.

S. Harding, "Evolution of image filters on graphic processor units using cartesian genetic programming," in WCCI 2008, 2008. http://dx.doi.org/10.1109/CEC.2008.4631051

S. Harding and W. Banzhaf, "Genetic programming on GPUs for image processing," in Proc. First International Workshop on Parallel and Bioinspired Algorithms (WPABA-2008), F. F. J. Lanchares and J. Risco-Martin, Eds., 2008, pp. 65-73.

Z. Vacek and L. Sekanina, "Evaluation of a new platform for image filter evolution," in Proc. of the 2007 NASA/ESA Conference on Adaptive Hardware and Systems, 2007. http://dx.doi.org/10.1109/AHS.2007.49

P. N. Kumar, S. Suresh, and J. R. P. Perinbam, "Digital image filter design using evolvable hardware," in ICIS 05: Proceedings of the Fourth Annual ACIS International Conference on Computer and Information Science, 2004. http://dx.doi.org/10.1109/ICIS.2005.56

P. Rosin and J. Hervas, "Image thresholding for landslide detection by genetic programming," in Analysis of multi-temporal remote sensing images, L. Bruzzone and P. Smits, Eds. World Scientific, 2002, pp. 65-72. http://dx.doi.org/10.1142/9789812777249_0005

B. Brais, J. P. Bouchard, Y. G. Xie, D. L. Rochefort, N. Chretien, F. M. Tome, R. G. Lafreniere, J. M. Rommens, E. Uyama, and O. Nohira, "Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy," Nature Genetics, vol.18, pp. 164-167, 1998. http://dx.doi.org/10.1038/ng0298-164

F. M. S. Tome and M. Fradeau, "Nuclear changes in muscle disorders," Methods Achiev Exp Pathol, vol.12, pp. 261-296, 1986.

J. Yao, N. Kharma, and P. Grogono, "A multi-population genetic algorithm for robust and fast ellipse detection," Pattern Analysis and Application, vol.8, pp. 149-162, 2005. http://dx.doi.org/10.1007/s10044-005-0252-7

N. N. Kharma, H. Moghnieh, J. Yao, Y. Guo, A. Abu-Baker, J. Laganiere, G. Rouleau, and M. Cheriet, "Automatic segmentation of cells from microscopic imagery using ellipse detection," IET Image Processing, vol.1, no.1, pp. 39-47, 2007. http://dx.doi.org/10.1049/iet-ipr:20045262

H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd Ed. Morgan Kaufman, 2005.

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer, 2003.


Full Text

[extern file]

intern file

Sonstige Links