Fractal indexing with the joint statistical properties and its application in texture image retrieval

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Referenz

M. Pi and H. Li: Fractal indexing with the joint statistical properties and its application in texture image retrieval. IET Image Process., vol. 2, no. 4, pp. 218-230, 2008

DOI

http://dx.doi.org/10.1049/iet-ipr:20070055

Abstract

Fractal image coding is a block-based scheme that exploits the self-similarity hiding within an image. Fractal parameters generated by the block-based scheme are quantitative measurements of self-similarity, and therefore they can be used to construct image signatures. By combining fractal parameters and collage error, a set of new statistical fractal signatures, such as histogram of collage error (HE), joint histogram of contrast scaling and collage error (JHSE), and joint histogram of range block mean and contrast scaling and collage error (JHMSE) is proposed. These fractal signatures effectively extract and reflect the statistical properties intrinsic in texture images. Hence, they provide new statistical features for use in texture image retrieval and identification. Furthermore, in order to reduce computational complexity of the JHMSE signature, the JHMSE signature is simplified to HM (histogram of range block mean) +JHSE and HM+HS (histogram of contrast scaling) +HE, based on the independence and distance equivalence. Mathematical analysis of the simplification scheme is also carried out. The proposed fractal signatures are compared with the existing fractal signatures. Experimental results show that the proposed signatures, HM+JHSE and HM+HS+HE, achieve a higher retrieval rate with a lower computational complexity.

Extended Abstract

Bibtex

@ARTICLE{4607181,
author={M. Pi and H. Li},
journal={IET Image Processing},
title={Fractal indexing with the joint statistical properties and its application in texture image retrieval},
year={2008},
volume={2},
number={4},
pages={218-230},
keywords={image retrieval;image texture;indexing;statistical analysis;JHSE;block-based scheme;contrast scaling histogram;fractal image coding;fractal indexing;image signatures;joint histogram of contrast scaling and collage error;joint statistical properties;range block mean histogram;self-similarity hiding;texture image retrieval},
doi={10.1049/iet-ipr:20070055},
url={http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4607181 http://de.evo-art.org/index.php?title=Fractal_indexing_with_the_joint_statistical_properties_and_its_application_in_texture_image_retrieval },
ISSN={1751-9659},
month={August},
}

Used References

[1] MANDELBROT B.B.: ‘The fractal geometry of nature’ (Freeman, San Francisco, CA , 1982)

[2] BARNSLEY M., SLOAN A.D.: ‘A better way to compress images’, Byte, 1988, 13, pp. 215–233

[3] JACQUIN A.E.: ‘Fractal image coding: a review’, Proc. IEEE, 1993, 81, (10), pp. 1451–1465

[4] JACOBS E.W., FISHER Y., BOSS R.D.: ‘Image compression: a study of iterated transform method’, Signal Process., 1992, 29, pp. 251–263

[5] ØIEN G.E., LEPSØY S.: ‘A class of fractal image coders with fast decoder convergence’ in ‘Fractal image compression: theory and application’ (Springer-Verlag, 1995), Chap. 8

[6] TONG C.S., PI M.: ‘Fast fractal image compression using adaptive search’, IEEE Trans. Image Process., 2001, 10, pp. 1269–1277

[7] PI M., BASU A., MANDAL M.: ‘A new decoding algorithm based on range block mean and contrast scaling’. Proc. ICIP’2003, Barcelona, Spain, 14 –17 September 2003, vol. 2, pp. 271–274

[8] WOHLBERG B., JAGER G.: ‘A review of the fractal image coding literature’, IEEE Trans. Image Process., 1999, 8, pp. 1716–1729

[9] PENTLAND A.: ‘Fractal-based description of natural scenes’, IEEE Trans. Pattern Anal. Mach. Intell., 1984, 6, (6), pp. 661–674

[10] CHEN C.C., DAPONTE J.S., FOX M.D.: ‘Fractal feature analysis and classification in medical imaging’, IEEE Trans. Med. Imaging, 1989, 8, (2), pp. 133–142

[11] PELEG S., NAOR J., HARTLEY R., AVNIR D.: ‘Multiple resolution texture analysis and classification’, IEEE Trans. Pattern Anal. Mach. Intell., 1984, 6, (4), pp. 518–523

[12] LIU S.C., CHANG S.: ‘Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification’, IEEE Trans. Image Process., 1989, 6, (8), pp. 1176–1184

[13] CHEN S.S., KELLER J.M., CROWNOVER R.M.: ‘On the calculation of fractal features from images’, IEEE Trans. Pattern Anal. Mach. Intell., 1993, 15, (10), pp. 1087–1090

[14] SARKAR N., CHAUDHURI B.B.: ‘An efficient differential boxcounting approach to compute fractal dimension of image’, IEEE Trans. Syst. Man Cybern., 1994, 24, (1), pp. 115–120

[15] LIU J.C., HWANG W.L., CHEN M.S.: ‘Estimation of 2-D noisy fractional Brownian motion and its applications using wavelets’, IEEE Trans. Image Process., 2000, 9, (8), pp. 1407–1419

[16] LEE W.L., CHEN Y.C.: ‘Ultrasonic liver tissues classification by fractal feature vector based on M-band wavelet transform’, IEEE Trans. Med. Imaging, 2003, 22, (3), pp. 382–292

[17] ZHANG A., CHENG B., ACHARYA R.: ‘An approach to query-bytexture in image database system’. Proc. SPIE Conf. Digital Image Storage and Archiving Systems, Philadelphia, October 1995

[18] JULIE J.M., ESSAFI H.: ‘Digital image indexing and retrieval by content using the fractal transform for multimedia database’. Proc. IEEE Int. Forum on Research and Technology Advances, ADL ’97, 1997, pp. 2–12

[19] LASFAR A., MOULINE S., ABOUTAJDINE D., CHERIFI H.: ‘Contentbased retrieval in fractal coded image database’. Proc. 15th Int. Conf. Pattern Recognition, 2000, vol. 1, pp. 1031–1034

[20] SCHOUTEN B., ZEEUW P.: ‘Image databases, scale and fractal transforms’. Proc. ICIP, 2000, vol. 2, pp. 534–537

[21] PI M., MANDAL M., BASU A.: ‘Image retrieval based on histogram of new fractal parameters’. Proc. ICASSP’2003, April 2003, vol. 3, pp. 585–588

[22] PI M., MANDAL M., BASU A.: ‘Image retrieval based on histogram of fractal parameters’, IEEE Trans. Multimed., 2005, 7, (4), pp. 597–605

[23] DISTASI R., NAPPI M., TUCCI M.: ‘FIRE: fractal indexing with robust extensions for image databases’, IEEE Trans. Image Process., 2003, 12, (3), pp. 373–384

[24] IDA T., SAMBONSUGI Y.: ‘Image segmentation using fractal coding’, IEEE Trans. Circuits Syst. Video Technol., 1995, 5, (6), pp. 567–570

[25] KAPLAN L.M., MURENZI R.: ‘Texture segmentation using multiscale Hurst features’. Proc. ICIP 97, vol. 3, pp. 205–208

[26] KAPLAN L.M., JAY KUO C.-C.: ‘Texture roughness analysis and synthesis via extended self-similar (ESS) model’, IEEE Trans.

Pattern Anal. Mach. Intell., 1995, 17, (11), pp. 1043–1056 [27] WU H.-C., CHANG C.-C.: ‘Hiding digital watermarks using fractal compression technique’, Fundam. Inform., 2003, 58, pp. 189–202

[28] PI M., LI C.H., LI H.: ‘A novel fractal image watermarking’, IEEE Trans. Multimed., 2006, 8, (3), pp. 488–499

[29] GHAZEL M., FREEMAN G.H., VRSCAY E.R.: ‘Fractal image denoising’, IEEE Trans. Image Process., 2003, 12, (12), pp. 1560–1577

[30] DO M.N., VETTERLI M.: ‘Wavelet-based texture retrieval using generalized Gaussian density and Kullback–Leibler distance’, IEEE Trans. Image Process., 2002, 11, (2), pp. 146–158

[31] http://www.cipr.rpi.edu/resource/stills/brodatz.html [32] SWAIN M.J., BALLARD D.H.: ‘Color indexing’, Int. J. Comput. Vis., 1991, 7, (1), pp. 11–32

[33] JPEG2000. Part 2: Final Committee Draft, ISO/IEC JTC1/SC29/WC1 N2000, December 2000

[34] DAUBECHIES I.: ‘Ten lectures on wavelets’ (SIAM, Philadelphia, 1992)

Links

Full Text

internal file


Sonstige Links

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4607181