Genetic Image Network for Image Classification

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Shinichi Shirakawa and Shiro Nakayama and Tomoharu Nagao: Genetic Image Network for Image Classification. Applications of Evolutionary Computing, EvoWorkshops 2009: EvoCOMNET, EvoENVIRONMENT, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, EvoNUM, EvoSTOC, EvoTRANSLOG, Lecture Notes in Computer Science, Vol. 5484, pp. 395-404, Springer, April 15-17 2009.

DOI

http://dx.doi.org/10.1007/978-3-642-01129-0_44

Abstract

Automatic construction methods for image processing proposed till date approximate adequate image transformation from original images to their target images using a combination of several known image processing filters by evolutionary computation techniques. Genetic Image Network (GIN) is a recent automatic construction method for image processing. The representation of GIN is a network structure. In this paper, we propose a method of automatic construction of image classifiers based on GIN, designated as Genetic Image Network for Image Classification (GIN-IC). The representation of GIN-IC is a feed-forward network structure. GIN-IC transforms original images to easier-to-classify images using image transformation nodes, and selects adequate image features using feature extraction nodes. We apply GIN-IC to test problems involving multi-class categorization of texture images, and show that the use of image transformation nodes is effective for image classification problems.

Extended Abstract

Bibtex

Used References

Cagnoni, S., Lutton, E., Olague, G. (eds.): Genetic and Evolutionary Computation for Image Processing and Analysis. EURASIP Book Series on Signal Processing and Communications, vol. 8. Hindawi Publishing Corporation (2007)

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

Tackett, W.A.: Genetic programming for feature discovery and image discrimination. In: Proceedings of the 5th International Conference on Genetic Algorithms (ICGA 1993), pp. 303–309. Morgan Kaufmann, San Francisco (1993)

Teller, A., Veloso, M.: Algorithm evolution for face recognition: What makes a picture difficult. In: International Conference on Evolutionary Computation, Perth, Australia, pp. 608–613. IEEE Press, Los Alamitos (1995) http://dx.doi.org/10.1109/ICEC.1995.487453

Teller, A., Veloso, M.: PADO: A new learning architecture for object recognition. In: Ikeuchi, K., Veloso, M. (eds.) Symbolic Visual Learning, pp. 81–116. Oxford University Press, Oxford (1996)

Zhang, M., Fogelberg, C.G.: Genetic programming for image recognition: An LGP approach. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 340–350. Springer, Heidelberg (2007)

Lam, B., Ciesielski, V.: Discovery of human-competitive image texture feature extraction programs using genetic programming. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 1114–1125. Springer, Heidelberg (2004)

Aurnhammer, M.: Evolving texture features by genetic programming. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 351–358. Springer, Heidelberg (2007)

Aoki, S., Nagao, T.: Automatic construction of tree-structural image transformation using genetic programming. In: Proceedings of the 1999 International Conference on Image Processing (ICIP 1999), Kobe, Japan, vol. 1, pp. 529–533. IEEE, Los Alamitos (1999) http://dx.doi.org/10.1109/ICIP.1999.821685

Nakano, Y., Nagao, T.: 3D medical image processing using 3D-ACTIT; automatic construction of tree-structural image transformation. In: Proceedings of the International Workshop on Advanced Image Technology (IWAIT 2004), Singapore, pp. 529–533 (2004)

Nakano, Y., Nagao, T.: Automatic construction of moving object segmentation from video images using 3D-ACTIT. In: Proceedings of The 2007 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2007), Montreal, Canada, pp. 1153–1158 (2007)

Shirakawa, S., Nagao, T.: Genetic image network (GIN): Automatically construction of image processing algorithm. In: Proceedings of the International Workshop on Advanced Image Technology (IWAIT 2007), Bangkok, Thailand (2007)

Shirakawa, S., Nagao, T.: Feed forward genetic image network: Toward efficient automatic construction of image processing algorithm. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Paragios, N., Tanveer, S.-M., Ju, T., Liu, Z., Coquillart, S., Cruz-Neira, C., Müller, T., Malzbender, T. (eds.) ISVC 2007, Part II. LNCS, vol. 4842, pp. 287–297. Springer, Heidelberg (2007) http://dx.doi.org/10.1007/978-3-540-76856-2_28

Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2), 199–230 (1995) http://dx.doi.org/10.1162/evco.1995.3.2.199

Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)


Links

Full Text

[extern file]

intern file

Sonstige Links