Genetic Programming for Combining Classifiers

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

W. B. Langdon and B. F. Buxton: Genetic Programming for Combining Classifiers. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 66-73, Morgan Kaufmann, 7-11 July 2001.

DOI

Abstract

Genetic programming (GP) can automat- ically fuse given classifiers to produce a combined classifier whose Receiver Operat- ing Characteristics (ROC) are better than [Scott et al., 1998b]’s “Maximum Realisable Receiver Operating Characteristics” (MR- ROC). I.e. better than their convex hull. This is demonstrated on artificial, medical and satellite image processing bench marks.

Extended Abstract

Bibtex

Used References

[Freund and Schapire, 1996] Y. Freund and R. E. Schapire. Experiments with a new boosting algo- rithm. In Machine Learning: Proc. 13th Interna- tional Conference, pp 148–156. Morgan Kaufmann.

[Jacobs et al., 1991] R. A. Jacobs, M. I. Jordon, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts. Neural Computation, 3:79–87, 1991.

Kohavi and Sommerfield, 1996] R. Kohavi and D. Sommerfield. MLC++: Machine learning library in C++. Technical report, http://www.sgi.com/Technology/mlc/util/util.ps.

[Langdon and Buxton, 2001] Evolving receiver oper- ating characteristics for data fusion. In J. F. Miller et al., eds., EuroGP’2001, LNCS 2038, pp 87–96, Springer-Verlag.

[Langdon, 1998] W. B. Langdon. Data Structures and Genetic Programming. Kluwer.

[Langdon, 2000] W. B. Langdon. Size fair and homol- ogous tree genetic programming crossovers. Genetic Programming & Evolvable Machines, 1(1/2):95–119.

[Mitchell, 1997] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[Ripley, 1996] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press.

[Scott et al., 1998a] M. J. J. Scott, M. Niranjan, and R. W. Prager. Parcel: feature subset selection in variable cost domains. Technical Report CUED/F- INFENG/TR.323, Cambridge University, UK.

[Scott et al., 1998b] Realisable classifiers: Improving operating performance on variable cost problems. In P. H. Lewis and M. S. Nixon, eds., Ninth British Machine Vision Conference, pages 304–315,

[Soule, 1999] T. Soule. Voting teams: A cooperative approach to non-typical problems using genetic pro- gramming. In W. Banzhaf et al., eds., GECCO, pages 916–922. Morgan Kaufmann.

[Swets et al., 2000] J. A. Swets, R. M. Dawes, and J. Monahan. Better decisions through science. Scien- tific American, pages 70–75, October.

[Yusoff et al., 1998] Combining multiple experts for classifying shot changes in video sequences. In IEEE Int. Conf. on Multimedia Computing and Systems.


Links

Full Text

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_gecco2001_roc.pdf

intern file

Sonstige Links