Halftoning and Stippling
Inhaltsverzeichnis
Reference
Oliver Deussen and Tobias Isenberg. Halftoning and Stippling. In Paul Rosin and John Collomosse, editors, Image and Video based Artistic Stylisation, volume 42 of Computational Imaging and Vision, chapter 3, pages 45–61. Springer, London, Heidelberg, 2013. ISBN 978-1-4471-4518-9 (hardcopy) and 978-1-4471-4519-6 (e-book).
DOI
http://dx.doi.org/10.1007/978-1-4471-4519-6_3
Abstract
One important origin of non-photorealistic computer graphics comes from printing technology. Halftoning is a reproduction technique for photography in printing. The continuous tones of the images are represented by fulltone dots of varying size, shape, and density. While printing technology brought this to perfection over time, computer graphics researchers developed methods that modified this process for artistic purposes. For purposes of halftoning, dots are distributed in repetitive patterns. Stippling, an artistic illustration technique, distributes them in a random but expressive way. Illustrators aim at representing tone and texture of an object by such patterns. Interestingly, the distributions can be described mathematically and a simple optimization scheme allows computers to imitate the artistic process quite well. The method can be extended towards distributing other shapes. In this case the optimization is extended to move and rotate the objects. This allows users not only to create other forms of illustrations but also to generate mosaics.
Extended Abstract
Bibtex
Used References
Deussen, O., Hiller, S., van Overveld, K., Strothotte, T.: Floating points: a method for computing stipple drawings. Comput. Graph. Forum 19(4), 40–51 (2000). doi:10.1111/1467-8659.00396
Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations. SIAM Rev. 41(4), 637–676 (1999). http://dx.doi.org/10.1137/S0036144599352836
Floyd, R., Steinberg, L.: An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Disp. 17(2), 75–77 (1976)
Fritzsche, L.P., Hellwig, H., Hiller, S., Deussen, O.: Interactive design of authentic looking mosaics using Voronoi structures. In: Proc. 2nd International Symposium on Voronoi Diagrams in Science and Engineering 2005, pp. 1–11 (2005)
Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4), 373–380 (1979). http://dx.doi.org/10.1109/TIT.1979.1056067
Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. Comput. Graph. Forum 27(4), 1209–1216 (2008). http://dx.doi.org/10.1111/j.1467-8659.2008.01259.x
Kim, S., Maciejewski, R., Isenberg, T., Andrews, W.M., Chen, W., Sousa, M.C., Ebert, D.S.: Stippling by example. In: Proc. NPAR, pp. 41–50. ACM, New York (2009). http://dx.doi.org/10.1145/1572614.1572622
Kim, S., Woo, I., Maciejewski, R., Ebert, D.S.: Automated hedcut illustration using isophotes. In: Proc. Smart Graphics, pp. 172–183. Springer, Berlin (2010). http://dx.doi.org/10.1007/978-3-642-13544-6_17
Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25(3), 509–518 (2006). http://dx.doi.org/10.1145/1141911.1141916
Li, H., Mould, D.: Structure-preserving stippling by priority-based error diffusion. In: Proc. Graphics Interface, pp. 127–134. Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo (2011)
Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). http://dx.doi.org/10.1109/TIT.1982.1056489
Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C., Chen, W.: Measuring stipple aesthetics in hand-drawn and computer-generated images. IEEE Comput. Graph. Appl. 28(2), 62–74 (2008). http://dx.doi.org/10.1109/MCG.2008.35
Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Example-based stippling using a scale-dependent grayscale process. In: Proc. NPAR, pp. 51–61. ACM, New York (2010). http://dx.doi.org/10.1145/1809939.1809946
Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Scale-dependent and example-based stippling. Comput. Graph. 35(1), 160–174 (2011). http://dx.doi.org/10.1016/j.cag.2010.11.006
Mould, D.: Stipple placement using distance in a weighted graph. In: Proc. CAe, pp. 45–52. Eurographics Association, Goslar (2007). http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH07/045-052
Newman, D.J.: The hexagon theorem. IEEE Trans. Inf. Theory 28(2), 137–138 (1982). http://dx.doi.org/10.1109/TIT.1982.1056492
Secord, A.: Weighted Voronoi stippling. In: Proc. NPAR, pp. 37–43. ACM, New York (2002). http://dx.doi.org/10.1145/508530.508537
Smith, J.: Recent developments in numerical integration. J. Dyn. Syst. Meas. Control 96(1), 61–70 (1974). http://dx.doi.org/10.1115/1.3426777
Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1980)
Links
Full Text
http://tobias.isenberg.cc/personal/papers/Deussen_2013_HS.pdf