Image Processing and CGP
Inhaltsverzeichnis
Reference
Lukas Sekanina and Simon L. Harding and Wolfgang Banzhaf and Taras Kowaliw: Image Processing and CGP. Cartesian Genetic Programming, Natural Computing Series, pp. 181-215, Springer, 2011.
DOI
http://dx.doi.org/10.1007/978-3-642-17310-3_6
Abstract
In this chapter, we will present three applications in which CGP can automatically generate novel image processing algorithms that compare to or exceed the best known conventional solutions. The applications fall into the areas of image preprocessing and classification.
Extended Abstract
Bibtex
Used References
Brais, B., Bouchard, J.P., Xie, Y.G., Rochefort, D.L., Chretien, N., Tome, F.M., Lafreniere, R.G., Rommens, J.M., Uyama, E., Nohira, O.: Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nature Genetics 18, 164–167 (1998) http://dx.doi.org/10.1038/ng0298-164
Brownrigg, D.: The weighted median filter. Commun. ACM 27(8), 807–818 (1984) http://dx.doi.org/10.1145/358198.358222
Burian, A., Takala, J.: Evolved Gate Arrays for Image Restoration. In: Proc. Congress on Evolutionary Computing, pp. 1185–1192. IEEE Press (2004)
Cagnoni, S., Lutton, E., Olague, G.: Genetic and Evolutionary Computation for Image Processing and Analysis. EURASIP Book Series on Signal Processing and Communications, Volume 8. Hindawi Publishing Corporation (2007) http://dx.doi.org/10.1155/9789774540011
Chan, R.H., Ho, C.W., Nikolova, M.: Salt-and-Pepper Noise Removal by Median-type Noise Detectors and Edge-preserving Regularization. IEEE Transactions on Image Processing 14, 1479–1485 (2005) http://dx.doi.org/10.1109/TIP.2005.852196
Dougherty, E.R., Astola, J.T. (eds.): Nonlinear Filters for Image Processing. SPIE/IEEE Series on Imaging Science & Engineering. SPIE/IEEE (1999)
Dumoulin, J., Foster, J.A., Frenzel, J.F., McGrew, S.: Special Purpose Image Convolution with Evolvable Hardware. In: Real-World Applications of Evolutionary Computing – Proc. Workshop on Evolutionary Computation in Image Analysis and Signal Processing, LNCS, vol. 1803, pp. 1–11. Springer (2000)
GNU: GNU image manipulation program (GIMP). www.gimp.org (2008). [Online; accessed 21-January-2008]
Harding, S.L.: Evolution of Image Filters on Graphics Processor Units Using Cartesian Genetic Programming. In: J. Wang (ed.) Proc. IEEE World Congress on Computational Intelligence. IEEE Press (2008)
Harding, S.L., Banzhaf, W.: Genetic Programming on GPUs for Image Processing. In: J. Lanchares, F. Fernandez, J. Risco-Martin (eds.) Proc. Workshop on Parallel and Bioinspired Algorithms, pp. 65–72. Complutense University of Madrid Press (2008)
Harding, S.L., Banzhaf, W.: Genetic programming on GPUs for image processing. International Journal of High Performance Systems Architecture 1(4), 231–240 (2008) http://dx.doi.org/10.1504/IJHPSA.2008.024207
Harding, S.L., Banzhaf, W.: Distributed Genetic Programming on GPUs using CUDA. In: I. Hidalgo, F. Fernandez, J. Lanchares (eds.) Proc. Workshop on Parallel Architectures and Bioinspired Algorithms, pp. 1–10 (2009)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer (2008)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory IT-8, 179–187 (1962)
Hwang, H., Haddad, R.A.: Adaptive median filters: new algorithms and results. IEEE Transactions on Image Processing 4(4), 499–502 (1995) http://dx.doi.org/10.1109/83.370679
Keijzer, M., Babovic, V.: Genetic Programming, Ensemble Methods and the Bias/Variance Tradeoff – Introductory Investigations. In: Proc. European Conference on Genetic Programming, pp. 76–90. Springer (2000)
Kharma, N., Kowaliw, T., Clement, E., Jensen, C., Youssef, A., Yao, J.: Project CellNet: Evolving an Autonomous Pattern Recognizer. International Journal of Pattern Recognition and Artificial Intelligence 18(6), 1039–1056 (2004) http://dx.doi.org/10.1142/S0218001404003587
Koivisto, P., Astola, J., Lukin, V., Melnik, V., Tsymbal, O.: Removing Impulse Bursts from Images by Training-Based Filtering. EURASIP Journal on Applied Signal Processing 2003(3), 223–237 (2003) http://dx.doi.org/10.1155/S1110865703211045
Koivisto, P., Huttunen, H., Kuosmanen, P.: Training-based optimization of soft morphological filters. Journal of Electronic Imaging 5(3), 300–322 (1996) http://dx.doi.org/10.1117/12.242617
Kowaliw, T., Banzhaf, W., Kharma, N., Harding, S.: Evolving Novel Image Features Using Genetic Programming-Based Image Transforms. In: Proc. IEEE Congress on Evolutionary Computation. IEEE Press (2009)
Lam, B., Ciesielski, V.: Discovery of Human-Competitive Image Texture Feature Extraction Programs Using Genetic Programming. In: Proc. Genetic and Evolutionary Computation Conference, pp. 1114–1125. Springer (2004)
Marshall, S.: New direct design method for weighted order statistic filters. IEE proceedings. Vision, image and signal processing 151(1), 1–8 (2004) http://dx.doi.org/10.1049/ip-vis:20040259
Nikolova, M.: A Variational Approach to Remove Outliers and Impulse Noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004) http://dx.doi.org/10.1023/B:JMIV.0000011920.58935.9c
Porter, R.: Evolution on FPGAs for Feature Extraction. Ph.D. thesis, Queensland University of Technology, Brisbane, Australia (2001)
Schulte, S., Nachtegael, M., Witte, V.D., der Weken, D.V., Kerre, E.E.: Fuzzy Impulse Noise Reduction Methods for Color Images. In: Computational Intelligence, Theory and Applications International Conference 9th, Fuzzy Days in Dortmund, pp. 711–720. Springer (2006)
Sekanina, L.: Image filter design with evolvable hardware. In: Applications of Evolutionary Computing, LNCS, vol. 2279, pp. 255–266. Springer (2002) http://dx.doi.org/10.1007/3-540-46004-7_26
Sekanina, L.: Evolvable components: From Theory to Hardware Implementations. Natural Computing. Springer (2004)
Sekanina, L., Martinek, T.: Evolving Image Operators Directly in Hardware. In: S. Cagnoni, E. Lutton, G. Olague (eds.) Genetic and Evolutionary Computation for Image Processing and Analysis, EURASIP Book Series on Signal Processing and Communications, Volume 8, pp. 93–112. Hindawi Publishing Corporation (2007)
Sekanina, L., Ruzicka, R.: Easily Testable Image Operators: The Class of Circuits Where Evolution Beats Engineers. In: Proc. NASA/DoD Conference on Evolvable Hardware, pp. 135–144. IEEE Computer Society (2003) http://dx.doi.org/10.1109/EH.2003.1217658
Sekanina, L., Vasicek, Z.: Nonlinear Image Filter (2009). Czech Utility model UV020017
Slany, K., Sekanina, L.: Fitness Landscape Analysis and Image Filter Evolution Using Functional-Level CGP. In: Proc. of European Conf. on Genetic Programming, LNCS, vol. 4445, pp. 311–320. Springer (2007) http://dx.doi.org/10.1007/978-3-540-71605-1_29
Sonka, M., Hlavac, V., Boyle, R.: Image Processing: Analysis and Machine Vision. Thomson-Engineering (1999)
Street, W., Wolberg, W., Mangasarian, O.: Nuclear feature extraction for breast tumor diagnosis. In: IS&T/SPIE 1993 International Symposium on Electronic Imaging (1993)
Tome, F.M.S., Fradeau, M.: Nuclear changes in muscle disorders. Methods Achiev. Exp. Pathol. 12, 261–296 (1986)
Vasicek, Z., Bidlo, M., Sekanina, L., Torresen, J., Glette, K., Furuholmen, M.: Evolution of Impulse Bursts Noise Filters. In: Proc. NASA/ESA Conference on Adaptive Hardware and Systems, pp. 27–34. IEEE Computer Society (2009) http://dx.doi.org/10.1109/AHS.2009.33
Vasicek, Z., Sekanina, L.: An Area-Efficient Alternative to Adaptive Median Filtering in FPGAs. In: Proc. International Conference on Field Programmable Logic and Applications, pp. 216–221. IEEE Computer Society (2007) http://dx.doi.org/10.1109/FPL.2007.4380650
Vasicek, Z., Sekanina, L.: An Evolvable Hardware System in Xilinx Virtex II Pro FPGA. International Journal of Innovative Computing and Applications 1(1), 63–73 (2007) http://dx.doi.org/10.1504/IJICA.2007.013402
Vasicek, Z., Sekanina, L.: Evaluation of a New Platform For Image Filter Evolution. In: Proc. NASA/ESA Conference on Adaptive Hardware and Systems, pp. 577–584. IEEE Computer Society (2007)
Vasicek, Z., Sekanina, L.: Reducing the Area on a Chip Using a Bank of Evolved Filters. In: Proc. International Conference on Evolvable Systems, LNCS, vol. 4684, pp. 222–232. Springer (2007)
Vasicek, Z., Sekanina, L.: Novel Hardware Implementation of Adaptive Median Filters. In: Proc. IEEE Design and Diagnostics of Electronic Circuits and Systems Workshop, pp. 110–115. IEEE Computer Society (2008)
Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann (2005)
Zhang, M., Ciesielski, V.B., Andreae, P.: A Domain-Independent Window Approach to Multiclass Object Detection Using Genetic Programming. EURASIP Journal on Applied Signal Processing 2003(8), 841–859 (2003) http://dx.doi.org/10.1155/S1110865703303063
Zhou, W., David, Z.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans on Circuits and Systems: Analog and Digital Signal Processing 46(1), 78–80 (1999) http://dx.doi.org/10.1109/82.749102
Links
Full Text
[extern file]