Image Retrieval with Relevance Feedback based on Genetic Programming

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Cristiano D. Ferreira and Ricardo da Silva Torres and Marcos Andre Goncalves and Weiguo Fan: Image Retrieval with Relevance Feedback based on Genetic Programming. XXIII Simpósio Brasileiro de Banco de Dados, pp. 120-134, SBC, 13-15 October 2008.



This paper presents a new content-based image retrieval framework with relevance feedback. This framework employs Genetic Programming to discover a combination of descriptors that better characterizes the user perception of image similarity. Several experiments were conducted to validate the proposed framework. These experiments employed three different image databases and color, shape, and texture descriptors to represent the content of database images. The proposed framework was compared with three other relevance feedback methods regarding their efficiency and effectiveness in image retrieval tasks. Experiment results demonstrate the superiority of the proposed method.

Extended Abstract


Used References

Arica, N. and Vural, F. T. Y. (2003). BAS: A Perceptual Shape Descriptor Based on the Beam Angle Statistics. Pattern Recognition Letters, 24(9-10):1627–1639.

B ̈ack, T., Fogel, D. B., and Michalewicz, Z. (2002). Evolutionary Computation 1 Basics Algorithms and Operators. Institute of Physics Publishing.

Cord, M., Gosselin, P. H., and Philipp-Foliguet, S. (2007). Stochastic exploration and active learning for image retrieval. IVC, 25(1):14–23.

de Almeida, H. M., Gonc ̧alves, M. A., C., M., and Calado, P. (2007). A Combined Component Approach for Finding Collection-adapted Ranking Functions based on Genetic Programming. In SIGIR’07, pages 399–406, Amsterdam, The Netherlands.

Doulamis, N. and Doulamis, A. (2006). Evaluation of relevance feedback schemes in content-based in retrieval systems. Signal Processing: Image Communication, 21(4):334–357.

Fan, W., Fox, E. A., Pathak, P., and Wu, H. (2004a). The Effects of Fitness Functions on Genetic Programming-Based Ranking Discovery for Web Search. Journal of the American Society for Infor- mation Science and Technology, 55(7):628–636.

Fan, W., Gordon, M. D., and Pathak, P. (2004b). A generic ranking function discovery framework by genetic programming for information retrieval. Information Processing & Management, 40(4):587–602.

Fishburn, P. C. (1988). Non-Linear Preference and Utility Theory. Johns Hopkins University Press, Baltimore.

Gonzalez, R. C. and Woods, R. E. (1992). Digital Image Processing. Addison-Wesley, Reading, MA, USA.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.

Lacerda, A., Cristo, M., Gonc ̧alves, M. A., Fan, W., Ziviani, N., and Ribeiro-Neto, B. (2006). Learning to advertise. In SIGIR’06, pages 549–556.

Lee, T. S. (1996). Image representation using 2d gabor wavelets. IEEE TPAMI, 18(10):959–971.

Liu, Y., Zhang, D., Lu, G., and Ma, W.-Y. (2007). A survey of content-based image retrieval with high-level semantics. PR, 40(1):262–282.

R. C. Veltkamp, M. T. (2000). Content-based image retrieval systems: A survey. Technical report, UU-CS- 2000-34.

Razente, H., Barioni, M. C. N., Traina, A. J. M., and Jr., C. T. (2007). Constrained aggregate similarity queries in metric spaces. In SBBD 2007, pages 145–159.

Rui, Y. and Huang, T. (2000). Optimizing learning in image retrieval. In Proc. of the IEEE Conf. on CVPR, pages 236–245.

Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998). Relevance Feedback: A Power Tool for Interactive Content-Based Image Retrieval. IEEE Trans. on Circuits and Systems for Video Technology, 8(5):644–655.

Stehling, R., Nascimento, M., and Falc ̃ao, A. (2002). A Compact and Efficient Image Retrieval Approach Based on Border/Interior Pixel Classification. In CIKM’02, pages 102–109.

Steji ́c, Z., Takama, Y., and K. (2003). Genetic algorithm-based relevance feedback for image retrieval using local similarity patterns. Information Processing and Management, 39(1):1–23.

Stricker, M. A. and Orengo, M. (1995). Similarity of Color Images. In Storage and Retrieval for Image and Video Databases (SPIE), pages 381–392.

Swain, M. and Ballard, D. (1991). Color Indexing. International Journal of Computer Vision, 7(1):11–32.

Tong, S. and Chang, E. Y. (2001). Support vector machine active learning for image retrieval. In Proc. of 9th ACM inter. conf. on Multimedia, pages 107–118.

Torres, R. and Falc ̃ao, A. X. (2006). Content-Based Image Retrieval: Theory and Applications. Revista de Inform ́atica Te ́orica e Aplicada, 13(2):161–185.

Torres, R. and Falc ̃ao, A. X. (2007). Contour Salience Descriptors for Effective Image Retrieval and Anal- ysis. Image and Vision Computing, 25(1):3–13.

Torres, R., Falc ̃ao, A. X., and da F. Costa, L. (2004). A Graph-based Approach for Multiscale Shape Analysis. Pattern Recognition, 37(6):1163–1174.

Torres, R., Falc ̃ao, A. X., Gonc ̧alves, M. A., Papa, J. P., Zhang, B., Fan, W., and Fox, E. A. (2008). A genetic programming framework for content-based image retrieval. Pattern Recognition. to appear.

Unser, M., Aldroubi, A., and Eden, M. (1993). A family of polynomial spline wavelet transforms. Signal Process., 30(2):141–162.

Vadivel, A., Majumdar, A., and Sural, S. (2004). Characteristics of weighted feature vector in content-based image retrieval applications. Intelligent Sensing and Information Processing, 1(18):127–132.

Wang, Y. P. and Pavlids, T. (1990). Optimal Correspondence of String Subsequences. IEEE TPAMI, 12(11):1080–1087.

Zhou, X. S. and Huang, T. S. (2003). Relevance feedback in image retrieval: A comprehensive review. Multimedia System, 8(6):536–544.


Full Text

intern file

Sonstige Links