Interactive evolutionary 3d fractal modeling
Inhaltsverzeichnis
Reference
Pang, W., Hui, K.: Interactive evolutionary 3d fractal modeling. The Visual Computer 26, 1467–1483 (2010)
DOI
http://link.springer.com/article/10.1007%2Fs00371-010-0500-8
Abstract
This paper presents a technique for creating 3D fractal art forms automatically. Using this approach, designers can get access to a large number of 3D art shapes that can be modified interactively. This is based on a modified evolutionary algorithm using Fractal Transform (FT) and Iterated Function System (IFS), which provides tunable geometric parameters. Fitness function for measuring the aesthetics of a fractal shape is formulated based on characteristic parameters in fractal theory, including capacity dimension, correlation dimension, and largest Lyapunov exponent. The productivity of visually appealing fractal can be enhanced by using the proposed technique. Experiments demonstrated the effectiveness of the proposed method, which can be applied to the design of jewelry, light fixture, and decorative patterns.
Extended Abstract
Bibtex
Used References
Barnsley, M., Demko, S.: Iterated function systems and the global construction of fractals. Proc. R. Soc. Lond. A 399(1817), 243–275 (1985) http://dx.doi.org/10.1098/rspa.1985.0057
Sprott, J.C.: Automatic Generation of iterated function systems. Comput. Graph. 18(3), 417–425 (1994) http://dx.doi.org/10.1016/0097-8493(94)90042-6
Barnsley, M.: Fractals Everywhere, 2nd edn. Academic Press, San Diego (1993)
Scott, D.: The fractal flame algorithm http://flam3.com/flame.pdf 2004
Scott, D.: The electric sheep. ACM SIGEVOlution 1(2), 10–16 (2006) http://dx.doi.org/10.1145/1147192.1147194
Wannarumon, S., Bohez, E.L.J.: A new aesthetic evolutionary approach for jewelry design. Comput.-Aided Des. Appl. 3(4), 385–394 (2006)
Wannarumon, S., Bohez, E.L.J., Annanon, K.: Aesthetic evolutionary algorithm for fractal-based user-centered jewelry design. AI EDAM 22(1), 19–39 (2008)
Berkowitz, J.: Fractal Cosmos: The Art of Mathematical Design. Amber Lotus, Portland (1998)
Joye, Y.: Evolutionary and cognitive motivations for fractal art in art and design education. Int. J. Art Des. Education 24(2), 175–185 (2005) http://dx.doi.org/10.1111/j.1476-8070.2005.00438.x
Aks, D., Sprott, J.C.: Quantifying aesthetic preference for chaotic patterns. Empir. Stud. Arts 14, 1–16 (1996)
Spehar, B., Clifford, C.W.G., Newell, B.R., Taylor, R.P.: Universal aesthetic of fractals. Comput. Graph. 27(5), 813–820 (2003) http://dx.doi.org/10.1016/S0097-8493(03)00154-7
Mitina, O.V., Abraham, F.D.: The use of fractals for the study of the psychology of perception: psychophysics and personality factors, a brief report. Int. J. Mod. Phys. C 4(8), 1047–1060 (2003) http://dx.doi.org/10.1142/S0129183103005182
Bentley, P.: Evolutionary Design by Computers. Morgan Kaufmann, San Francisco (1999)
Todd, S., Latham, W.: Evolutionary Art and Computers. Academic Press, London (1992)
Sims, K.: Artificial evolution for computer graphics. Comput. Graph. 25(4), 319–328 (1991) http://dx.doi.org/10.1145/127719.122752
Kruger, A.: Implementation of a fast box-counting algorithm. Comput. Phys. Commun. 98(1–2), 224–234 (1996) http://dx.doi.org/10.1016/0010-4655(96)00080-X
Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenom. 9(1–2), 189–208 (1983) http://dx.doi.org/10.1016/0167-2789(83)90298-1
Merkwirth, C., Parlitz, U., Wedekind, I., Lauterborn, W.: TSTOOL MatLAB toolbox, http://www.physik3.gwdg.de/tstool/ (2002)
Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1985) http://dx.doi.org/10.1103/RevModPhys.57.617
Jacob, C.: A power primer. Psycholog. Bull. 112(1), 55–159 (1992)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM Comput. Graph. 21(3), 163–169 (1987) http://dx.doi.org/10.1145/37402.37422
Links
Full Text
[extern file]