Inverse Mapping with Sensitivity Analysis for Partial Selection in Interactive Evolution

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Jonathan Eisenmann, Matthew Lewis, Rick Parent: Inverse Mapping with Sensitivity Analysis for Partial Selection in Interactive Evolution. In: EvoMUSART 2013, S. 72-84.



Evolutionary algorithms have shown themselves to be useful interactive design tools. However, current algorithms only receive feedback about candidate fitness at the whole-candidate level. In this paper we describe a model-free method, using sensitivity analysis, which allows designers to provide fitness feedback to the system at the component level. Any part of a candidate can be marked by the designer as interesting (i.e. having high fitness). This has the potential to improve the design experience in two ways: (1) The finer-grain guidance provided by partial selections facilitates more precise iteration on design ideas so the designer can maximize her energy and attention. (2) When steering the evolutionary system with more detailed feedback, the designer may discover greater feelings of satisfaction with and ownership over the final designs.

Extended Abstract


booktitle={Evolutionary and Biologically Inspired Music, Sound, Art and Design},
series={Lecture Notes in Computer Science},
editor={Machado, Penousal and McDermott, James and Carballal, Adrian},
title={Inverse Mapping with Sensitivity Analysis for Partial Selection in Interactive Evolution},
url={ },
publisher={Springer Berlin Heidelberg},
keywords={interactive evolution; sensitivity analysis; inverse mapping},
author={Eisenmann, Jonathan and Lewis, Matthew and Parent, Rick},

Used References

Avila, S., Lisboa, A., Krahenbuhl, L., Carpes, W., Vasconcelos, J., Saldanha, R., Takahashi, R.: Sensitivity analysis applied to decision making in multiobjective evolutionary optimization 42, 1103–1106 (2006)

Caldwell, C., Johnston, V.S.: Tracking a criminal suspect through face-space with a genetic algorithm. In: ICGA 1991, pp. 416–421 (1991)

Dawkins, R.: The blind watchmaker: why the evidence of evolution reveals a universe without design. Norton (1986)

Eisenmann, J., Lewis, M., Cline, B.: Interactive Evolution for Designing Motion Variants. In: Madani, K., Correia, A.D., Rosa, A., Filipe, J. (eds.) Computational Intelligence. SCI, vol. 343, pp. 135–149. Springer, Heidelberg (2011)

Erhan, H., Woodbury, R., Salmasi, N.H.: Visual sensitivity analysis of parametric design models: improving agility in design. Master’s thesis, School of Interactive Arts and Technology - Simon Fraser University (2009)

Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. of the 2nd Int’l Conf. on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

Hancock, P., Frowd, C.: Evolutionary generation of faces. In: Proc. of AISB (1999)

Kim, V.G., Li, W., Mitra, N.J., DiVerdi, S., Funkhouser, T.: Exploring collections of 3D models using fuzzy correspondences. ACM Trans. Graph. 31(4) (July 2012)

Lee, J.H., Kim, H.S., Cho, S.B.: Accelerating evolution by direct manipulation for interactive fashion design. In: Proc. Fourth Int’l. Conf. on Comp. Intelligence and Multimedia Applications, ICCIMA 2001, pp. 343–347. IEEE (2001)

Lewis, M.: Aesthetic evolutionary design with data flow networks. In: Soddu, C. (ed.) Proc. of Generative Arts (2000)

Lewis, M.: Evolutionary visual art and design. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 3–37. Springer, Heidelberg (2007)

Li, Y., Hu, C., Chen, M., Hu, J.: Investigating Aesthetic Features to Model Human Preference in Evolutionary Art. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 153–164. Springer, Heidelberg (2012)

Lim, I.S.: Evolving facial expressions. In: IEEE Int’l. Conf. on Evol. Comput., vol. 2, pp. 515–520. IEEE (November 1995)

Morris, M.D.: Factorial sampling plans for preliminary comp. experiments. Technometrics 33(2), 161–174 (1991)

Parmee, I.C., Cvetković, D.C., Watson, A.H., Bonham, C.R.: Multiobjective satisfaction within an interactive evol. design environment. Evol. Comput. 8(2), 197–222 (2000)

Romero, J., Machado, P., Carballal, A., Osorio, O.: Aesthetic Classification and Sorting Based on Image Compression. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 394–403. Springer, Heidelberg (2011)

Saltelli, A.: Global sensitivity analysis: the primer. John Wiley (2008)

Semet, Y.: Interactive evolutionary computation: a survey of existing theory. University of Illinois (2002)

Sims, K.: Artificial evolution for computer graphics. In: Proc. SIGGRAPH 1991, vol. 25, pp. 319–328. ACM, New York (1991)

Takagi, H., Kishi, K.: On-line knowledge embedding for an interactive EC-based montage system. In: Third Int’l. Conf. Knowledge-Based Intelligent Information Engineering Systems, pp. 280–283 (December1999)

Takagi, H.: New IEC Research and Frameworks. In: Fodor, J., Kacprzyk, J. (eds.) Aspects of Soft Computing, Intelligent Robotics and Control. SCI, vol. 241, pp. 65–76. Springer, Heidelberg (2009)

Todd, S., Latham, W.: Evolutionary art and computers. Academic Press (1992)

Umetani, N., Igarashi, T., Mitra, N.J.: Guided exploration of physically valid shapes for furniture design. ACM Trans. Graph (Proc. of SIGGRAPH 2012) 31(4) (2012)


Full Text

[extern file]

intern file

Sonstige Links