Learning aesthetic judgements in evolutionary art systems

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Li, Y., Hu, C., Minku, L., Zuo, H.: Learning aesthetic judgements in evolutionary art systems. Genetic Programming and Evolvable Machines 14(3), 315–337 (2013)

DOI

http://link.springer.com/article/10.1007%2Fs10710-013-9188-7

Abstract

Learning aesthetic judgements is essential for reducing users’ fatigue in evolutionary art systems. Although judging beauty is a highly subjective task, we consider that certain features are important to please users. In this paper, we introduce an adaptive model to learn aesthetic judgements in the task of interactive evolutionary art. Following previous work, we explore a collection of aesthetic measurements based on aesthetic principles. We then reduce them to a relevant subset by feature selection, and build the model by learning the features extracted from previous interactions. To apply a more accurate model, multi-layer perceptron and C4.5 decision tree classifiers are compared. In order to test the efficacy of the approach, an evolutionary art system is built by adopting this model, which analyzes the user’s aesthetic judgements and approximates their implicit aesthetic intentions in the subsequent generations. We first tested these aesthetic measurements on different artworks from our selected artists. Then, a series of experiments were performed by a group of users to validate the adaptive learning model. The study reveals that different features are useful for identifying different patterns, but not all are relevant for the description of artists’ styles. Our results show that the use of the learning model in evolutionary art systems is sound and promising for predicting users’ preferences.

Extended Abstract

Bibtex

Used References

E. Acebo, S. Mateu, Benford’s law for natural and synthetic images, in Computational Aesthetics, ed. by L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Eurographics Association, Aire-la-Ville, 2005) pp. 169–176

S. Baluja, D. Pomerleau, T. Jochem, Towards automated artificial evolution for computer-generated images. Connect. Sci. 6(2 and 3), 325–354 (1994) http://dx.doi.org/10.1080/09540099408915729

M. Bense, Einführung in die informationstheoretische asthetik. Graundlegung und Anwendung in der Texttheorie (Introduction to the Information-theoretical Aesthetics. Foundation and Application to the Text Theory) (1969)

P.J. Bentley (ed.), Evolutionary Design by Computers. (Academic Press, London, 1999)

P.J. Bentley, D.W. Corne, Creative Evolutionary Systems. (Academic Press, London, 2002)

S. Bergen, J.R. Brian, Aesthetic 3d model evolution, in EvoMUSART, pp. 11–22 (2012)

G.D. Birkhoff, Aesthetic Measure. (Harvard University Press, Cambridge, 1933)

J. Clune, H. Lipson, Evolving 3d objects with a generative encoding inspired by developmental biology. SIGEVOlution 5(4), 2–12 (2011) http://dx.doi.org/10.1145/2078245.2078246

D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, Y. Xu, Color harmonization, in ACM Transactions on Graphics (TOG), pp. 624–630 (2006)

R. Dawkins, The Blind Watchmaker. (Penguin Books, London, 1986)

S. DiPaola, L. Gabora, Incorporating characteristics of human creativity into an evolutionary art algorithm. Gene. Program. Evol. Mach. 10(2), 97–110 (2009) http://dx.doi.org/10.1007/s10710-008-9074-x

A. Ekårt, D. Sharma, S. Chalakov, Modelling human preference in evolutionary art, in EvoApplications (2), vol. 6625, ed. by C. Di Chio, A. Brabazon, G.A. Di Caro, R. Drechsler, M. Ebner, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero, E. Tarantino, A.G.B. Tettamanzi, N. Urquhart, A.S. Uyar (Springer, Berlin, 2011), pp. 303–312

J. Geller, Data mining: practical machine learning tools and techniques with java implementations. SIGMOD Record 31(1), 77 (2002)

G. Greenfield, On the origins of the term “computational aesthetics”, in Computational Aesthetics, ed. by L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Eurographics Association, Aire-la-Ville, 2005), pp. 9–12

D. Harwood, T. Ojala, M. Pietikäinen, S. Kelman, L. Davis, Cartr-678-texture classification by center-symmetric auto-correlation, using kullback discrimination of distributions. Technical report, Computer Vision Labratory, Center for Automation Research (University of Maryland, College Park, Maryland, 1993)

E. den Heijer, A.E. Eiben, Using aesthetic measures to evolve art, in IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

E. den Heijer, A.E. Eiben, Evolving art using multiple aesthetic measures, in EvoApplications (2), vol. 6625, ed. by C. Di Chio, A. Brabazon, G.A. Di Caro, R. Drechsler, M. Ebner, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero, E. Tarantino, A.G.B. Tettamanzi, N. Urquhart, A.S. Uyar (Springer, Berlin, 2011), pp. 234–243

F. Hoenig, Defining computational aesthetics, in Computational Aesthetics ed. by L. Neumann, M.S. Casasayas, B. Gooch, W. Purgathofer, (Eurographics Association, Aire-la-Ville, 2005), pp. 13–18

S.G. Hornby, J. Bongard, Learning comparative user models for accelerating human-computer collaborative search, in (EvoMUSART, 2012), pp. 117–128

G.C. Johnson, Fitness in evolutionary art and music: what has been used and what could be used? in (EvoMUSART, 2012), pp. 129–140

Y. Li, C. Hu, Aesthetic learning in an interactive evolutionary art system, in EvoApplications (2), vol. 6025 (Springer, Berlin, 2010), pp. 301–310

A. Liapis, G. Yannakakis, J. Togelius, Adapting models of visual aesthetics for personalized content creation. IEEE Transactions on Computational Intelligence and AI in Games Special Issue on Computational Aesthetics in Games (to appear) (2012)

L. Liu, R. Chen, L. Wolf, D. Cohen-Or, Optimizing photo composition, in Computer Graphics Forum, vol. 29, ed. by T. Akenine-Moeller, M. Zwicker (Wiley Online Library, 2010), pp. 469–478

E. Lutton, Evolution of fractal shapes for artists and designers. Int. J. Artif. Intell. Tools 15(4), 651–672 (2006) http://dx.doi.org/10.1142/S0218213006002850

P. Machado, A. Cardoso, Computing aesthetics, in Proceedings of XIVth Brazilian Symposium on Artificial Intelligence (SBIA ’98) (Springer 1998), pp. 219–229

P. Machado, A. Cardoso, All the truth about NEvAr. Appl. Intell. 16(2), 101–118 (2002) http://dx.doi.org/10.1023/A:1013662402341

P. Machado, J. Romero, B. Manaris, Experiments in computational aesthetics. Art Artif. Evol. (2), 381–415 (2008)

K. Mainzer, Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science, vol. 51 (World Scientific Publishing Company Incorporated, Singapore, 2005)

B. Manaris, P. Roos, P. Machado, D. Krehbiel, L. Pellicoro, J. Romero, A corpus-based hybrid approach to music analysis and composition, in Proceedings of the National Conference on Artificial Intelligence, vol. 22 (Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007), p. 839

K. Matkovic, L. Neumann, T. Psik, W. Purgathofer, Global contrast factor—a new approach to image contrast, in Computational Aesthetics, ed. by L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Eurographics Association, Aire-la-Ville, 2005), pp. 159–167

T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996) http://dx.doi.org/10.1016/0031-3203(95)00067-4

G. Papadopoulos, G. Wiggins, AI methods for algorithmic composition: a survey, a critical view and future prospects. in AISB Symposium on Musical Creativity (Edinburgh, UK, 1999), pp. 110–117

P.M. Todd, G.M. Werner, Frankensteinian approaches to evolutionary music composition. in Musical Networks: Parallel Distributed Perception and Performance, ed. by N. Griffith, P.M. Todd, (MIT Press, 1999), pp. 313–340. http://www-abc.mpibberlin.mpg.de/users/ptodd/publications/99evmus/99evmus.pdf. Accesed 27 Apr 2005 404

R. Poli, S. Cagnoni, Genetic programming with user-driven selection: experiments on the evolution of algorithms for image enhancement, in Genetic Programming 1997: Proceedings of the Second Annual Conference (Morgan Kaufmann, Stanford University, CA, USA, 1997), pp. 269–277

R. Quinlan, C4.5: Programs for Machine Learning. (Morgan Kaufmann Publishers, San Mateo, 1993)

J. Rigau, M. Feixas, M. Sbert, Informational dialogue with Van Gogh’s paintings, in Computational Aesthetics, ed. by D.W. Cunningham, V. Interrante, P. Brown, J. McCormack (Eurographics Association, Aire-la-Ville, 2008), pp. 115–122

B.J. Ross, W. Ralph, H. Zong, Evolutionary image synthesis using a model of aesthetics, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation ed. by G.G. Yen, L. Wang, P. Bonissone, S.M. Lucas (IEEE Press, Vancouver, 2006) pp. 3832–3839

B.J. Ross, H. Zhu, Procedural texture evolution using multiobjective optimization. New Gener. Comput. 22(3), 271–293 (2004) http://dx.doi.org/10.1007/BF03040964

D. Rumelhart, G. Hintont, R. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986) http://dx.doi.org/10.1038/323533a0

J. Secretan, N. Beato, D. D’Ambrosio, A. Rodriguez, A. Campbell, J. Folsom-Kovarik, K. Stanley, Picbreeder: A case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011) http://dx.doi.org/10.1162/EVCO_a_00030

A. Serag, S. Ono, S. Nakayama, Using interactive evolutionary computation to generate creative building designs. Artif. Life Robot. 13(1), 246–250 (2008) http://dx.doi.org/10.1007/s10015-008-0588-3

C. Shannon, Prediction and entropy of printed english. Bell Syst. Tech. J. 30, 50–64 (1951)

K. Sims, Artificial Evolution for Computer Graphics, vol. 25. ACM (1991)

M. Stricker, M. Orengo, Similarity of color images, in Proceedings of SPIE Storage and Retrieval for Image and Video Databases, vol. 2420 (San Diego, CA, 1995), pp. 4

N. Svangard, P. Nordin, Automated aesthetic selection of evolutionary art by distance based classification of genomes and phenomes using the universal similarity metric, in Applications of Evolutionary Computing, EvoWorkshops 2004: (EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC 2004), pp. 447–456

H. Takagi, Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001). doi:10.1109/5.949485 http://dx.doi.org/10.1109/5.949485

H. Takagi, M. Ohsaki, Interactive evolutionary computation-based hearing aid fitting. Evol. Comput. IEEE Trans. 11(3), 414–427 (2007) http://dx.doi.org/10.1109/TEVC.2006.883465

S. Wang, X. Wang, H. Takagi, User fatigue reduction by an absolute rating data-trained predictor in IEC, in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on (2006), pp. 2195–2200

S. Wannarumon, L. J.Bohez, K. Annanon, Aesthetic evolutionary algorithm for fractal-based user-centered jewelry design. AI EDAM 22(1), 19–39 (2008)


Links

Full Text

[extern file]

intern file

Sonstige Links