Learning and Recognition of Hand-drawn Shapes using Generative Genetic Programming

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Wojciech Jaskowski and Krzysztof Krawiec and Bartosz Wieloch: Learning and Recognition of Hand-drawn Shapes using Generative Genetic Programming. Applications of Evolutionary Computing, EvoWorkshops2007, LNCS, Vol. 4448, pp. 281-290, Springer Verlag, 11-13 April 2007.

DOI

http://dx.doi.org/10.1007/978-3-540-71805-5_31

Abstract

We describe a novel method of evolutionary visual learning that uses generative approach for assessing learner’s ability to recognize image contents. Each learner, implemented as a genetic programming individual, processes visual primitives that represent local salient features derived from a raw input raster image. In response to that input, the learner produces partial reproduction of the input image, and is evaluated according to the quality of that reproduction. We present the method in detail and verify it experimentally on the real-world task of recognition of hand-drawn shapes.

Extended Abstract

Bibtex

Used References

Bhanu, B., Lin, Y., Krawiec, K.: Evolutionary Synthesis of Pattern Recognition Systems. Springer-Verlag, Berlin Heidelberg New York (2005)

Krawiec, K., Bhanu, B.: Visual learning by coevolutionary feature synthesis. IEEE Transactions on System, Man, and Cybernetics – Part B. 35, 409–425 (2005) http://dx.doi.org/10.1109/TSMCB.2005.846644

Krishnapuram, B., Bishop, C.M., Szummer, M.: Generative models and bayesian model comparison for shape recognition. In: IWFHR 2004. Proceedings of the Ninth International Workshop on Frontiers in Handwriting Recognition, pp. 20–25. IEEE Computer Society, Washington, DC, USA (2004)

Koza, J.: Genetic programming – 2. MIT Press, Cambridge, MA (1994)

Jaskowski, W.: Genetic programming with cross-task knowledge sharing for learning of visual concepts. Master’s thesis, Poznan University of Technology, Poznań, Poland (2006)

Wieloch, B.: Genetic programming with knowledge modularization for learning of visual concepts. Master’s thesis, Poznan University of Technology, Poznań, Poland (2006)

Teller, A., Veloso, M.: PADO: A new learning architecture for object recognition. In: Ikeuchi, K., Veloso, M. (eds.) Symbolic Visual Learning, pp. 77–112. Oxford Press, New York (1997)

Rizki, M., Zmuda, M., Tamburino, L.: Evolving pattern recognition systems. IEEE Transactions on Evolutionary Computation 6, 594–609 (2002) http://dx.doi.org/10.1109/TEVC.2002.806167

Maloof, M., Langley, P., Binford, T., Nevatia, R., Sage, S.: Improved rooftop detection in aerial images with machine learning. Machine Learning 53, 157–191 (2003) http://dx.doi.org/10.1023/A:1025623527461

Olague, G., Puente, C.: The honeybee search algorithm for three-dimensional reconstruction. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 427–437. Springer, Berlin Heidelberg New York (2006) http://dx.doi.org/10.1007/11732242_38

Howard, D., Roberts, S.C., Ryan, C.: Pragmatic genetic programming strategy for the problem of vehicle detection in airborne reconnaissance. Pattern Recognition Letters 27, 1275–1288 (2006) http://dx.doi.org/10.1016/j.patrec.2005.07.025

Krawiec, K.: Learning high-level visual concepts using attributed primitives and genetic programming. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 515–519. Springer-Verlag, Berlin Heidelberg New York (2006) http://dx.doi.org/10.1007/11732242_48

Krawiec, K.: Evolutionary learning of primitive-based visual concepts. In: Proc. IEEE Congress on Evolutionary Computation, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, pp. 4451–4458 (July 16-21, 2006)

Revow, M., Williams, C.K.I., Hinton, G.E.: Using generative models for handwritten digit recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 592–606 (1996) http://dx.doi.org/10.1109/34.506410

Luke, S.: ECJ evolutionary computation system (2002) (http://cs.gmu.edu/eclab/projects/ecj/)


Links

Full Text

[extern file]

intern file

Sonstige Links