Maintaining Population Diversity in Evolutionary Art

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Eelco den Heijer, A. E. Eiben: Maintaining Population Diversity in Evolutionary Art. In: EvoMUSART 2012, S. 60-71.



Evolutionary art is inherently more concerned with exploration than with exploitation, because users are typically more interested in evolving a collection of diverse images than converging to a single ‘optimal’ image. However, maintaining diversity is a difficult task. In this paper we investigate various techniques to promote population diversity in evolutionary art. We introduce customised mutation and crossover operators that perform a local search to diversify individuals and evaluate the effect of these operators on population diversity. We also investigate alternatives for the fitness crowding operator in NSGA-II; we use a genotype and a phenotype distance function to calculate the crowding distance and investigate their effect on population diversity.

Extended Abstract


booktitle={Evolutionary and Biologically Inspired Music, Sound, Art and Design},
series={Lecture Notes in Computer Science},
editor={Machado, Penousal and Romero, Juan and Carballal, Adrian},
title={Maintaining Population Diversity in Evolutionary Art},
url={ },
publisher={Springer Berlin Heidelberg},
author={den Heijer, E. and Eiben, A.E.},

Used References

del Acebo, E., Sbert, M.: Benford’s law for natural and synthetic images. In: Neumann et al. [17], pp. 169–176

Bergen, S., Ross, B.J.: Evolutionary art using summed multi-objective ranks. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII, Genetic and Evolutionary Computation, vol. 8, pp. 227–244. Springer, New York (2011)

Boden, M.: The Creative Mind. Abacus (1990)

Boden, M.: Creativity and Art: Three Roads to Surprise. Oxford University Press (2010)

Burke, E., Gustafson, S., Kendall, G., Krasnogor, N.: Advanced Population Diversity Measures in Genetic Programming. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 341–350. Springer, Heidelberg (2002)

Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: An analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary Computation 8(1), 47–62 (2004)

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

Eiben, A., Schippers, A.: On evolutionary exploration and exploitation. Fundamenta Informaticae 35(1-4), 35–50 (1998)

Ekárt, A., Németh, S.: A Metric for Genetic Programs and Fitness Sharing. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 259–270. Springer, Heidelberg (2000)

den Heijer, E., Eiben, A.E.: Using aesthetic measures to evolve art. In: IEEE Congress on Evolutionary Computation (CEC 2010), July 18-23, IEEE Press, Barcelona (2010)

den Heijer, E., Eiben, A.: Comparing Aesthetic Measures for Evolutionary Art. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010)

den Heijer, E., Eiben, A.: Evolving Art Using Multiple Aesthetic Measures. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Drechsler, R., Farooq, M., Grahl, J., Greenfield, G., Prins, C., Romero, J., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Urquhart, N., Uyar, A.Ş. (eds.) EvoApplications 2011, Part II. LNCS, vol. 6625, pp. 234–243. Springer, Heidelberg (2011)

Jackson, D.: Phenotypic Diversity in Initial Genetic Programming Populations. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 98–109. Springer, Heidelberg (2010)

Jackson, D.: Promoting Phenotypic Diversity in Genetic Programming. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 472–481. Springer, Heidelberg (2010)

Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. The MIT Press, Cambridge (1992)

Matkovic, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W.: Global contrast factor-a new approach to image contrast. In: Neumann et al. [17], pp. 159–168

Neumann, L., Sbert, M., Gooch, B., Purgathofer, W. (eds.): Computational Aesthetics 2005: Eurographics Workshop on Computational Aesthetics in Graphics, Visualization and Imaging 2005, Girona, Spain, May 18-20. Eurographics Association (2005)

Nguyen, T.H., Nguyen, X.H.: A brief overview of population diversity measures in genetic programming. In: Pham, T.L., Le, H.K., Nguyen, X.H. (eds.) Proceedings of the Third Asian-Pacific Workshop on Genetic Programming, pp. 128–139 (2006)

Ross, B., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp. 1087–1094 (2006)

Stricker, M., Orengo, M.: Similarity of color images. Storage and Retrieval of Image and Video Databases III 2, 381–392 (1995)


Full Text

[extern file]

intern file

Sonstige Links

Eelco den Heijer, A. E. Eiben: Maintaining Population Diversity in Evolutionary Art using Structured Populations