Multiple query evaluation based on an enhanced genetic algorithm

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Referenz

M. Boughanem, C. Chrisment, L. Tamine: Multiple query evaluation based on an enhanced genetic algorithm. Information Processing and Management, 39 (2003), pp. 215–231

DOI

http://dx.doi.org/10.1016/S0306-4573(02)00048-1

Abstract

Recent studies suggest that significant improvement in information retrieval performance can be achieved by combining multiple representations of an information need. The paper presents a genetic approach that combines the results from multiple query evaluations. The genetic algorithm aims to optimise the overall relevance estimate by exploring different directions of the document space. We investigate ways to improve the effectiveness of the genetic exploration by combining appropriate techniques and heuristics known in genetic theory or in the IR field. Indeed, the approach uses a niching technique to solve the relevance multimodality problem, a relevance feedback technique to perform genetic transformations on query formulations and evolution heuristics in order to improve the convergence conditions of the genetic process. The effectiveness of the global approach is demonstrated by comparing the retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation performed on a subset of TREC-4 using the Mercure IRS. Moreover, experimental results show the positive effect of the various techniques integrated to our genetic algorithm model.

Extended Abstract

Bibtex

@article{Tamine:2003:MQE:762177.762181,
author = {Tamine, Lynda and Chrisment, Claude and Boughanem, Mohand},
title = {Multiple Query Evaluation Based on an Enhanced Genetic Algorithm},
journal = {Inf. Process. Manage.},
issue_date = {March 2003},
volume = {39},
number = {2},
month = mar,
year = {2003},
issn = {0306-4573},
pages = {215--231},
numpages = {17},
url = {http://dx.doi.org/10.1016/S0306-4573(02)00048-1 http://de.evo-art.org/index.php?title=Multiple_query_evaluation_based_on_an_enhanced_genetic_algorithm},
doi = {10.1016/S0306-4573(02)00048-1},
acmid = {762181},
publisher = {Pergamon Press, Inc.},
address = {Tarrytown, NY, USA},
keywords = {genetic algorithm, information retrieval, relevance feedback},
} 

Used References

1 Bäck, T. (1995). Evolutionary algorithms in theory and practice. New York: Oxford University Press.

2 Thomas Bäck , Martin Schütz, Intelligent Mutation Rate Control in Canonical Genetic Algorithms, Proceedings of the 9th International Symposium on Foundations of Intelligent Systems, p.158-167, June 09-13, 1996 http://dl.acm.org/citation.cfm?id=689300&CFID=558819604&CFTOKEN=68186175

3 Brian T. Bartell , Garrison W. Cottrell , Richard K. Belew, Optimizing similarity using multi-query relevance feedback, Journal of the American Society for Information Science, v.49 n.8, p.742-761, June 1998 http://dx.doi.org/10.1002/(SICI)1097-4571(199806)49:8%3C742::AID-ASI8%3E3.3.CO;2-8

4 Nicholas J. Belkin , C. Cool , W. Bruce Croft , James P. Callan, The effect multiple query representations on information retrieval system performance, Proceedings of the 16th annual international ACM SIGIR conference on Research and development in information retrieval, p.339-346, June 27-July 01, 1993, Pittsburgh, Pennsylvania, USA http://doi.acm.org/10.1145/160688.160760

5 Boughanem, M., Chrisment, C., Mothe, J., Soule-Dupuy, C., & Tamine, L., (2000). In F. Crestani & G. Pasi (Eds.), Chapter in Connectionist and Genetic Approaches to Perform IR, Soft Computing, Techniques and Application (pp. 173-196).

6 M. Boughanem , C. Chrisment , L. Tamine, Genetic Approach to Query Space Exploration, Information Retrieval, v.1 n.3, p.175-192, October 1999 http://dx.doi.org/10.1023/A:1009931404333

7 Boughanem, M., & Souléé Dupuy, C. (1997). Query modification based on relevance backpropagation. In Proceedings of the 5th International Conference on Computer Assisted Information Searching on Internet (RIA O'97), Montreal (pp. 469-487).

8 Buckley, C., & Walz, J. (1999). The TREC8 query track. In E. Voorhees, D. Harman (Eds.), Proceedings of the eighth Text Retrieval Conference (TREC-8), NIST 500-246.

9 Hsinchun Chen, Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms, Journal of the American Society for Information Science, v.46 n.3, p.194-216, April 1995 http://dx.doi.org/10.1002/(SICI)1097-4571(199504)46:3%3C194::AID-ASI4%3E3.0.CO;2-S

10 Goldberg, D. E. (1994). Algorithmes génétiques, exploration, optimisation et apprentissage automatique. Addison Wesley.

11 M. Gordon, Probabilistic and genetic algorithms in document retrieval, Communications of the ACM, v.31 n.10, p.1208-1218, Oct. 1988 [http://doi.acm.org/10.1145/63039.6304

12 Donna Harman, Relevance feedback revisited, Proceedings of the 15th annual international ACM SIGIR conference on Research and development in information retrieval, p.1-10, June 21-24, 1992, Copenhagen, Denmark http://doi.acm.org/10.1145/133160.133167

13 Jorng-Tzong Horng , Ching-Chang Yeh, Applying genetic algorithms to query optimization in document retrieval, Information Processing and Management: an International Journal, v.36 n.5, p.737-759, Sept. 2000 http://dx.doi.org/10.1016/S0306-4573(00)00008-X

14 Katzer, M. J., McGill, J. A., Tessier, W., Frakes, P., & DasGupta, P. (1982). A study of the overlap among document representations. Information Technology: Research and Development, 1(4), 261-274.

15 Kraft, D. H., Petry, F. E., Buckles, B. P., & Sadisavan, T. (1995). Applying genetic algorithms to information retrieval system via relevance feedback. In P. Bosc & J. Kacprzyk (Eds.), Fuzziness in Database Management Systems Studies in Fuzziness Series (pp. 330-344). Heidelberg, Germany: Physica Verlag.

16 K. L. Kwok, A network approach to probabilistic information retrieval, ACM Transactions on Information Systems (TOIS), v.13 n.3, p.324-353, July 1995 http://doi.acm.org/10.1145/203052.203067

17 Joon Ho Lee, Analyses of multiple evidence combination, Proceedings of the 20th annual international ACM SIGIR conference on Research and development in information retrieval, p.267-276, July 27-31, 1997, Philadelphia, Pennsylvania, USA http://doi.acm.org/10.1145/258525.258587

18 McGill, M., Koll, M., & Norreeault, T. (1979). An evaluation of factors affecting document ranking by IR systems. Syracuse: Syracuse university school of information studies.

19 Petrowski, A. (1997). A new selection operator dedicated to speciation. In International Conference on Genetic Algorithms ICGA.

20 Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documentation, 33(4), 294-304.

21 Robertson, S. E., Walker, S., Jones, S., Hancock, M. M., Beaulieu, M., & Gatford, M. (1995). Okapi at TREC3. In Proceedings of the third Text Retrieval Conference (TREC-3).

22 Salton, G., & Buckley, C. (1990). Improving retrieval performances by relevance feedback. Journal of the American Society for Information Science, 41(4), 288-297.

23 Tamine, L. (2000). Optimisation de requêtes dans système de recherche d'information, approche basée sur l'exploitation de techniques avancées de l'algorithmique génétique. Doctorat thesis, University Paul Sabatier, Toulouse, France.

24 L. Tamine , M. Boughanem, Query optimisation using an improved genetic algorithm, Proceedings of the ninth international conference on Information and knowledge management, p.368-373, November 06-11, 2000, McLean, Virginia, USA http://doi.acm.org/10.1145/354756.354842

25 Howard Turtle , W. Bruce Croft, Evaluation of an inference network-based retrieval model, ACM Transactions on Information Systems (TOIS), v.9 n.3, p.187-222, July 1991 http://doi.acm.org/10.1145/125187.125188

26 Venturini, G., Slimane, M., Morin, F., & Beauville, A. (1997). On using interactive genetic algorithms for knowledge discovery. In International Conference on Genetic Algorithms, ICGA'97.

27 Jing-Jye Yang , Robert Korfhage, Query Optimization in Information Retrieval Using Genetic Algorithms, Proceedings of the 5th International Conference on Genetic Algorithms, http://dl.acm.org/citation.cfm?id=657582&CFID=558819604&CFTOKEN=68186175

Links

Full Text

internal file


Sonstige Links