On using genetic algorithms for multimodal relevance optimization in information retrieval
Inhaltsverzeichnis
Referenz
M. Boughanem, C. Chrisment, L. Tamine: On using genetic algorithms for multimodal relevance optimization in information retrieval. Journal of the American Society for Information Science and Technology, 53 (11) (2002), pp. 934–942
DOI
http://dx.doi.org/10.1002/asi.10119
Abstract
This article presents a genetic relevance optimization process performed in an information retrieval system. The process uses genetic techniques for solving multimodal problems (niching) and query reformulation techniques commonly used in information retrieval. The niching technique allows the process to reach different relevance regions of the document space. Query reformulation techniques represent domain knowledge integrated in the genetic operators structure to improve the convergence conditions of the algorithm. Experimental analysis performed using a TREC subcollection validates our approach.
Extended Abstract
Bibtex
@article {ASI:ASI10119, author = {Boughanem, M. and Chrisment, C. and Tamine, L.}, title = {On using genetic algorithms for multimodal relevance optimization in information retrieval}, journal = {Journal of the American Society for Information Science and Technology}, volume = {53}, number = {11}, publisher = {Wiley Subscription Services, Inc., A Wiley Company}, issn = {1532-2890}, url = {http://dx.doi.org/10.1002/asi.10119 http://de.evo-art.org/index.php?title=On_using_genetic_algorithms_for_multimodal_relevance_optimization_in_information_retrieval}, doi = {10.1002/asi.10119}, pages = {934--942}, year = {2002}, }
Used References
J E.Baker (1985). Adaptive Selection Methods for Genetic Algorithm, in Proceedings of the first International Conference on Genetic Algorithm (ICGA) pp 101-111.
D. Beasly, D.R Bull & R. R Martin (1993). A sequential niche technique for multimodal function optimization, Evolutionary Computation, 1(2) : pp 101-125.
N. J. Belkin, C. Cool, W. Bruce Croft, J. P. Callan (1993). Effect of multiple query representations on information retrieval system performance. In Proceedings of ACM SIGIR, Conference on Research and Development in Information Retrieval , pp 339-346, Pittsburgh.
M. Boughanem (1997). Query modification based on relevance backpropagation, In Proceedings of the 5th International Conference on Computer Assisted Information Searching on Internet (RIAO’97), pp 469-487, Montreal.
M. Boughanem, C. Chrisment & L.Tamine (1999) :Genetic Approach to Query Space Exploration. Information Retrieval Journal, Vol 1 N°3 , pp175-192.
YK Chang , GC. Cirillo and J. Razon (1971). Evaluation of feedback retrieval using modified freezing, residual collection and test and control groups. In : The Smart Retrieval System: Experiments in Automatic document processing, Prentice-Hall Inc, chap 17, pp 355-370.
K. A Dejong (1975). An analysis of the behavior of a class of genetic adaptive systems, Doctocal dissertation University of Michigan,. Dissertation abstracts International 36 (10), 5140B. University Microfilms N°76-9381.
S. Dumais (1994). Latent Semantic Indexing (LSI), TREC3 report. In Proceedings of the 3rd Conference on Text Retrieval Conference (TREC) pp 219-230.
C.M Fonseca & P. J Fleming (1995). Multi-objective genetic algorithms made easy: selection, sharing and mating restrictions, In IEEE International Conference in Engineering Systems: Innovations and Application, pp 45-52, Sheffield, UK.
D.E. Goldberg & Richardson (1987). Genetic algorithms with sharing for multimodal function optimization, in Proceedings of the second International Conference on Genetic Algorithm (ICGA) , pp 41-49.
D.E. Goldberg (1989) : Genetic Algorithms in Search, Optimisation and Machine Learning, Edition Addison Wesley 1989.
M. Gordon (1988) . Probabilistic and genetic algorithms for document retrieval, Communications of the ACM pp 1208- 1218.
L. Gutman (1978). What is Who What in Statistics. The Statistician, 26 pp 81 :107, 1978
D. Harman (1992). Relevance feedback revisited : In Proceedings of ACM SIGIR, Conference on Research and Development in Information Retrieval, pp 1-10.
D. Haines & W.B Croft (1993). Relevance Feedback and Inference Networks, Conference on Research and Development in Information Retrieval (SIGIR), pp 2-11, 1993.
J. Hollan (1962). Concerning Efficicent Adaptive Systems.In M.C Yovits, G.T Jacobi, &G.D Goldstein(Eds) Self Organizing Systems pp 215-230 Washinton : Spartan Books, 1962.
J. Horn (1997). The nature of niching : Genetic algorithms and the evolution of optimal cooperative populations, PhD thesis, university of Illinois at Urbana, Champaign.
J.T Horng & C.C Yeh (2000). Applying genetic algorithms to query optimisation in document retrieval, In Information Processing and Management 36(2000) pp 737-759.
Katzer , M.J. McGill, J.A. Tessier, W. Frakes and P. DasGupta (1982). A study of the overlap among document representations. Information Technology : Research and Development, 1 (4) : pp 261-274.
D.H Kraft, FE Petry, B.P Buckles and T. Sadisavan (1995). Applying genetic algorithms to information retrieval system via relevance feedback, In Bosc and Kacprzyk J Eds, Fuzziness in Database Management Systems Studies in Fuzziness Series, Physica Verlag, pp 330-344, Heidelberg, Germany.
K. L Kwok (1995). A network approach to probabilistic information retrieval, ACM transactions on information systems, vol 13 N°3, pp 324-353.
J. H. Lee (1997). Analyse of multiple evidence combination , In Proceedings of ACM SIGIR, Conference on Research and Development in Information Retrieval pp 267-275.
S.W. Mahfoud (1995). Niching methods for genetic algorithms, PhD thesis, university of Illinois at Urbana, Champaign, 1995.
MCGill, Koll & Norreeault (1979). An evaluation of factors affecting document ranking by IR systems, Syracuse, Syracuse university school of information studies.
A. Petrowski (1997) . A clearing procedure as a niching method for genetic algorithms. In the Proceedings of the IEE International Conference on Evolutionary Computation (ICEC), Nagoya, Japan.
S.E Robertson & K. Sparch Jones (1976). Relevance Weighting for Search Terms, Journal of The American Society for Information Science (JASIS), Vol 27, N°3, pp 129-146.
S. E. Robertson (1977). The probability ranking principle in IR, Journal of documentation 33 (4), pp 294 – 304.
S. E Robertson & S. Walker (1997). On relevance weights with little relevance information, In Proceedings of the 20th annual international ACM SIGIR conference on research and development, pp 16-24, 1997.
Rocchio(1971). Relevance Feedback in Information Retrieval, in The Smart System Experiments in Automatic Document Processing, G.Salton, Editor, Prentice-Hall, Inc., Englewood Cliffs, NJ, pp 313-23, 1971.
G. Salton (1968). Automatic Information and Retrieval, Mcgrawhill Book Company, N. Y., 1968.
E.G Talbi (1999). Métaheuristiques pour l’optimisation combinatoire multi-objectifs : Etat de l’art, Rapport CNET (France Telecom) Octobre 1999.
L.Tamine (2000). Optimisation de requêtes dans système de recherche d’information, approche basée sur l’exploitation de techniques avancées de l’algorithmique génétique. Doctorat thesis, University Paul Sabatier, Toulouse, France
L. Tamine & M. Boughanem (20001). Un algorithme génétique spécifique à une évaluation multi-requêtes dans un système de recherche d’information, Journal Information Intelligence et Interaction, Vol 1 N°1, september 2001.
H. Turtle & W.B. Croft (1991). Evaluation of an inference network-based retrieval model, ACM Transactions on information systems, 9, 3: pp 187-222.
J.J Yang & R.R Korfhage (1993). Query optimisation in information retrieval using genetic Algorithms, in Proceedings of the fifth International Conference on Genetic Algorithms (ICGA), pp 603-611, Urbana, IL.
Links
Full Text
https://hal.archives-ouvertes.fr/hal-00359529/document