Quantum Art

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche

Reference

Alain Lioret: Quantum Art. In: Computational Aesthetics 2016 CAE'16, 135-139.

DOI

http://dx.doi.org/10.2312/exp.20161072

Abstract

The use of quantum computing in the creation of art is proving to be very interesting since it allows both the exploration of digital work using new algorithms and of artistic creation based on new concepts. These new algorithms mainly rely on the use of qubits instead of bits to perform simple or complex operations, which are applied to the components of digital works: namely the pixels in an image, the frames of an animation, the vertices of a 3D object, the words of a text or the notes of a musical score. This article reviews the use of quantum algorithms, using various examples and particularly the new methods being applied in computer graphics.

Extended Abstract

Bibtex

@inproceedings{Lioret:2016:QA:2981324.2981343,
author = {Lioret, Alain},
title = {Quantum Art},
booktitle = {Proceedings of the Joint Symposium on Computational Aesthetics and Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Rendering},
series = {Expresive '16},
year = {2016},
location = {Lisbon, Portugal},
pages = {135--139},
numpages = {5},
url = {http://dx.doi.org/10.2312/exp.20161072 http://dl.acm.org/citation.cfm?id=2981324.2981343 http://de.evo-art.org/index.php?title=Quantum_Art},
ISSN = {1816-0859},
ISBN = {978-3-03868-000-0},
acmid = {2981343},
publisher = {Eurographics Association},
address = {Aire-la-Ville, Switzerland, Switzerland},
} 


Used References

1 Scott Aaronson, Quantum Computing since Democritus, Cambridge University Press, New York, NY, 2013 http://dl.acm.org/citation.cfm?id=2487754&CFID=558819604&CFTOKEN=68186175

2 {Abb15} Abbott E. A.: Flatland: A romance of many dimensions. Princeton University Press, 2015. 3

3 Pablo Arrighi , Jonathan Grattage, Intrinsically universal n-dimensional quantum cellular automata, Journal of Computer and System Sciences, v.78 n.6, p.1883-1898, November, 2012 http://dx.doi.org/10.1016/j.jcss.2011.12.008

4 Mathieu Aubry , Ulrich Schlickewei , Daniel Cremers, Pose-consistent 3D shape segmentation based on a quantum mechanical feature descriptor, Proceedings of the 33rd international conference on Pattern recognition, August 31-September 02, 2011, Frankfurt, Germany http://dl.acm.org/citation.cfm?id=2039990&CFID=558819604&CFTOKEN=68186175

5 {BCM12} Bleh D., Calarco T., Montangero S.: Quantum game of life. EPL (Europhysics Letters) 97, 2 (2012). 2

6 {Bit11} Bitbol M.: Mecanique Quantique: Une introduction philosophique. Editions Flammarion, 2011. 2

7 {Blo16} Bloch sphere. "https://quantiki.org/wiki/bloch-sphere", 2016 (accessed February 8, 2016). 2

8 {Car} Caraiman S.: Quantum computer graphics algorithms.

9 {CG*12} Crease R., Goldhaber A., et al.: Art of the quantum moment. Proceedings of Bridges 2012: Mathematics, Music, Art, Architecture, Culture (2012), 307--314. 2

10 Simona Caraiman , Vasile I. Manta, New applications of quantum algorithms to computer graphics: the quantum random sample consensus algorithm, Proceedings of the 6th ACM conference on Computing frontiers, May 18-20, 2009, Ischia, Italy http://doi.acm.org/10.1145/1531743.1531757

11 {DJ92} Deutsch D., Jozsa R.: Rapid solution of problems by quantum computation. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (1992), vol. 439, The Royal Society, pp. 553--558.

12 {Gla01a} Glassner A.: Quantum computing. 2. Computer Graphics and Applications, IEEE 21, 5 (2001), 86--95. 1

13 {Gla01b} Glassner A.: Quantum computing. 3. Computer Graphics and Applications, IEEE 21, 6 (2001), 72--82. 1

14 Andrew Glassner, Quantum Computing, Part 1, IEEE Computer Graphics and Applications, v.21 n.4, p.84-92, July 2001 http://dx.doi.org/10.1109/38.953464

15 Lov K. Grover, A fast quantum mechanical algorithm for database search, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, p.212-219, May 22-24, 1996, Philadelphia, Pennsylvania, USA http://doi.acm.org/10.1145/237814.237866

16 Kuk-Hyun Han , Jong-Hwan Kim, Quantum-inspired evolutionary algorithm for a class of combinatorial optimization, IEEE Transactions on Evolutionary Computation, v.6 n.6, p.580-593, December 2002 http://dx.doi.org/10.1109/TEVC.2002.804320

17 {IW15} Izaac J. A., Wang J. B.: pyctqw: A continuous-time quantum walk simulator on distributed memory computers. Computer Physics Communications 186 (2015), 81--92. 4

18 {LGU03} Lanzagorta M. O., Gomez R. B., Uhlmann J. K.: Quantum rendering. In AeroSense 2003 (2003), International Society for Optics and Photonics, pp. 128--136.

19 {LIDH11} Le P. Q., Iliyasu A. M., Dong F., Hirota K.: A flexible representation and invertible transformations for images on quantum computers. In New Advances in Intelligent Signal Processing. Springer, 2011, pp. 179--202.

20 {Lio} Lioret A.: Time beings: Quantum beings for art exploration and creation.

21 Alain Lioret, Quantum computing for art exploration and creation, ACM SIGGRAPH 2014 Studio, August 10-14, 2014, Vancouver, Canada http://doi.acm.org/10.1145/2619195.2656283

22 Marco Lanzagorta , Jeffrey K. Uhlmann, Hybrid quantum-classical computing with applications to computer graphics, ACM SIGGRAPH 2005 Courses, July 31-August 04, 2005, Los Angeles, California http://doi.acm.org/10.1145/1198555.1198723

23 {Mar13} Martinez Michel C. M.: Esthetique quantique: Un regard croise arts et sciences. Science, Fables and Chimeras: Cultural Encounters (2013), 257.

24 {Mas14} Mastriani M.: Optimal estimation of states in quantum image processing. arXiv preprint arXiv:1406.5121 (2014).

25 Michael A. Nielsen , Isaac L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, New York, NY, 2011 http://dl.acm.org/citation.cfm?id=1972505&CFID=558819604&CFTOKEN=68186175

26 {Qua16} Quantiki. "https://quantiki.org/", 2016 (accessed February 8, 2016). 1

27 {QuT16} Qutip: Quantum toolbox in python. "http://qutip.org/", 2016 (accessed February 6, 2016). 2

28 {Sch92} Schrodinger E.: Physique quantique et representation du monde. Editions du Seuil, 1992. 1

29 P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proceedings of the 35th Annual Symposium on Foundations of Computer Science, p.124-134, November 20-22, 1994 http://dx.doi.org/10.1109/SFCS.1994.365700

30 {SP13} Srivastava M., Panigrahi P. K.: Quantum image representation through two-dimensional quantum states and normalized amplitude. arXiv preprint arXiv:1305.2251 (2013).

31 {Sto13} Stone L.: Re-visioning reality: Quantum superposition in visual art. Leonardo 46, 5 (2013), 449--454. 2

32 {Sym16} Sympy. "http://www.sympy.org", 2016 (accessed February 6, 2016). 2

33 {VA11} Voss-Andreae J.: Quantum sculpture: Art inspired by the deeper nature of reality. Leonardo 44, 1 (2011), 14--20. 2

34 Gexiang Zhang, Quantum-inspired evolutionary algorithms: a survey and empirical study, Journal of Heuristics, v.17 n.3, p.303-351, June 2011 http://dx.doi.org/10.1007/s10732-010-9136-0


Links

Full Text

intern file

Sonstige Links

http://dl.acm.org/citation.cfm?id=2981343&CFID=558819604&CFTOKEN=68186175