RealPigment: Paint Compositing by Example

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Jingwan Lu, Stephen DiVerdi, Connelly Barnes and Adam Finkelstein: RealPigment: Paint Compositing by Example. In: Computational Aesthetics 2014.

DOI

http://dx.doi.org/10.1145/2630397.2630401

Abstract

The color of composited pigments in digital painting is generally computed one of two ways: either alpha blending in RGB, or the Kubelka-Munk equation (KM). The former fails to reproduce paint like appearances, while the latter is difficult to use. We present a data-driven pigment model that reproduces arbitrary compositing behavior by interpolating sparse samples in a high dimensional space. The input is an of a color chart, which provides the composition samples. We propose two different prediction algorithms, one doing simple interpolation using radial basis functions (RBF), and another that trains a parametric model based on the KM equation to compute novel values. We show that RBF is able to reproduce arbitrary compositing behaviors, even non-paint-like such as additive blending, while KM compositing is more robust to acquisition noise and can generalize results over a broader range of values.

Extended Abstract

Bibtex

@inproceedings{Lu:2014:RPC:2630397.2630401,
author = {Lu, Jingwan and DiVerdi, Stephen and Chen, Willa A. and Barnes, Connelly and Finkelstein, Adam},
title = {RealPigment: Paint Compositing by Example},
booktitle = {Proceedings of the Workshop on Non-Photorealistic Animation and Rendering},
series = {NPAR '14},
year = {2014},
isbn = {978-1-4503-3020-6},
location = {Vancouver, British Columbia, Canada},
pages = {21--30},
numpages = {10},
url = {http://doi.acm.org/10.1145/2630397.2630401 http://de.evo-art.org/index.php?title=RealPigment:_Paint_Compositing_by_Example },
doi = {10.1145/2630397.2630401},
acmid = {2630401},
publisher = {ACM},
address = {New York, NY, USA},
keywords = {Kubelka Munk, color, compositing, paint, pigment},
} 

Used References

C. Bradford Barber , David P. Dobkin , Hannu Huhdanpaa, The quickhull algorithm for convex hulls, ACM Transactions on Mathematical Software (TOMS), v.22 n.4, p.469-483, Dec. 1996 http://doi.acm.org/10.1145/235815.235821

William Baxter , Yuanxin Liu , Ming C. Lin, A viscous paint model for interactive applications: Research Articles, Computer Animation and Virtual Worlds, v.15 n.3-4, p.433-441, July 2004 http://dx.doi.org/10.1002/cav.v15:3/4

William Baxter , Jeremy Wendt , Ming C. Lin, IMPaSTo: a realistic, interactive model for paint, Proceedings of the 3rd international symposium on Non-photorealistic animation and rendering, June 07-09, 2004, Annecy, France http://doi.acm.org/10.1145/987657.987665

Berns, R. S., and De la Rie, E. R. 2003. The effect of the refractive index of a varnish on the appearance of oil paintings. Studies in Conservation 48, 4, 251--262.

Cassidy J. Curtis , Sean E. Anderson , Joshua E. Seims , Kurt W. Fleischer , David H. Salesin, Computer-generated watercolor, Proceedings of the 24th annual conference on Computer graphics and interactive techniques, p.421-430, August 1997 http://doi.acm.org/10.1145/258734.258896

Edström, P. 2007. Examination of the revised Kubelka-Munk theory: considerations of modeling strategies. Journal of the Optical Society of America A 24, 2, 548--556.

Edström, P. 2007. Mathematical Modeling and Numerical Tools for Simulation and Design of Light Scattering in Paper and Print. PhD thesis, Mid Sweden University.

Edström, P. 2008. Next generation simulation tools for optical properties in paper and print. In Modeling and Simulation in the Pulp and Paper Industry, 156--169.

Giovanelli, R. G. 1995. Reflection by semi-infinite diffusers. Optica Acta: International Journal of Optics 2, 4.

Andrew S. Glassner, Principles of Digital Image Synthesis, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1994 http://dl.acm.org/citation.cfm?id=527570&CFID=588525319&CFTOKEN=29804931

Nathan Gossett , Baoquan Chen, Paint Inspired Color Mixing and Compositing for Visualization, Proceedings of the IEEE Symposium on Information Visualization, p.113-118, October 10-12, 2004 http://dx.doi.org/10.1109/INFOVIS.2004.52

Granberg, H., and Edström, P. 2003. Quantification of the intrinsic error of the Kubelka-Munk model caused by strong light absorption. Journal of Pulp and Paper Science 29, 11, 386--390.

Hecht, H. G. 1983. A comparison of the Kubelka-Munk, Rozenberg, and Pitts-Giovanelli methods of analysis of diffuse reflectance for several model systems. Applied Spectroscopy 37, 4, 315--403.

Vasiliki Kokla , Alexandra Psarrou , Vassilis Konstantinou, Ink recognition based on statistical classification methods, Proceedings of the Second International Conference on Document Image Analysis for Libraries, p.254-264, April 27-28, 2006 http://dx.doi.org/10.1109/DIAL.2006.24

Kubelka, P., and Munk, F. 1931. An article on optics of paint layers. Z. Tech. Phys 12, 593--601.

Lu, J., 2014. RealPigment project page. http://gfx.cs.princeton.edu/pubs/Lu_2014_RPC/. {Online; accessed 4-June-2014}.

Mohammadi, M., and Berns, R. S. 2006. Testing instrumental-based color matching for artist acrylic paints. Tech. rep., Rochester Institute of Technology, College of Science, Munsell Color Science Laboratory.

Ohta, N., and Robertson, A. R. 2006. Chapter 3. CIE standard colorimetric system. In Colorimetry: Fundamentals and Applications. John Wiley & Sons, Ltd, Chichester, UK.

Okumura, Y. 2005. Developing a spectral and colorimetric database of artist paint materials. PhD thesis, Rochester Institute of Technology.

M. J. D. Powell, Radial basis functions for multivariable interpolation: a review, Algorithms for approximation, Clarendon Press, New York, NY, 1987 http://dl.acm.org/citation.cfm?id=48433&CFID=588525319&CFTOKEN=29804931

Robertson, A. R. 1990. Historical development of CIE recommended color difference equations. Color Research & Application 15, 3, 167--170.

Rudolf, D., Mould, D., and Neufeld, E. 2005. A bidirectional deposition model of wax crayons. Computer Graphics Forum 24.

Sandoval, C., and Kim, A. D. 2014. Deriving Kubelka-Munk theory from radiative transport. Journal of the Optical Society of America A 31, 628--636.

Saunderson, J. L. 1942. Calculation of the color of pigmented plastics. Journal of the Optical Society of America 32, 727--736.

Shakespeare, T., and Shakespeare, J. 2003. A fluorescent extension to the KubelkaMunk model. Color Research & Application 28, 1, 4--14.

J. M. Shearer , M. A. Wolfe, ALGLIB, a simple symbol-manipulation package, Communications of the ACM, v.28 n.8, p.820-825, Aug. 1985 http://doi.acm.org/10.1145/4021.4023

Vargas, W. E., and Niklasson, G. A. 1997. Applicability conditions of the Kubelka-Munk theory. Applied Optics 36, 22, 5580--5586.

Chung-Ming Wang , Ren-Jie Wang, Image-Based Color Ink Diffusion Rendering, IEEE Transactions on Visualization and Computer Graphics, v.13 n.2, p.235-246, March 2007 http://dx.doi.org/10.1109/TVCG.2007.41

Westland, S., Iovine, L., and Bishop, J. M. 2002. Kubelka-Munk or neural networks for computer colorant formulation? In Congress of the International Colour Association, 745--748.

Grady Barrett Wright , Bengt Fornberg, Radial basis function interpolation: numerical and analytical developments, University of Colorado at Boulder, Boulder, CO, 2003 http://dl.acm.org/citation.cfm?id=959629&CFID=588525319&CFTOKEN=29804931

Xu, S., Tan, H., Jiao, X., Lau, F. C., and Pan, Y. 2007. A generic pigment model for digital painting. Computer Graphics Forum 26, 3.

Yang, L., and Kruse, B. 2004. Revised Kubelka-Munk theory. I. theory and application. Journal of the Optical Society of America A 21, 10, 1933--1941.

Yang, L., Kruse, B., and Miklavcic, S. J. 2004. Revised Kubelka-Munk theory. II. unified framework for homogeneous and inhomogeneous optical media. Journal of the Optical Society of America A 21, 10, 1942--1952.


Links

Full Text

http://www.connellybarnes.com/work/publications/2014_realpigment.pdf

intern file

Sonstige Links