Stochastic Generative Image Model Contributes to MRI Artistic Judgment Aptitude Validation

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Nikolaus Bezruczko: Stochastic Generative Image Model Contributes to MRI Artistic Judgment Aptitude Validation. In: Generative Art 2014.



This research describes instrumental role of artificially generated images during artistic judgment aptitude construct validation, then corroborates results with structural MRI brain scanning when hypothesis is an aptitude. MRI scanning shows artistic judgment aptitude is mediated by several aesthetic neuron networks with suggestion of asymmetrical lateralization to right hemisphere. Prominent questions addressed by this research are, first, do MRI brain scans support validity of stochastic generative images for artistic judgment aptitude testing? Secondly, how does generative art facilitate and enhance traditional cognitive test validation? Do generative algorithms and MRI affect construct validity? Finally, how might future research clarify other contributions of generative art to psychometric validation?

Extended Abstract


Used References

[1] Embretson, S. E. (1999). Generating items during testing: Psychometric issues and models. Psychometrika, 64(4), 407-433.

[2]Embretson, S., and Gorin, J. (2001). Improving construct validity with cognitive psychology principles. Journal of Educational Measurement, 38, 343-368.

[3] Dorin, A., McCabe, J., McCormack, J., Monro, G., & Whitelaw, M. (2012). A framework for understanding generative art. Digital Creativity, 23(3-4), 239-259.

[4] Dorin, A. (2013, March). Chance and complexity: stochastic and generative processes in art and creativity. In Proceedings of the Virtual Reality International Conference: Laval Virtual (p. 19). ACM.

[5] Berghaus, G. (1992). Neoplatonic and Pythagorean notions of world harmony and unity and their influence on Renaissance dance theory. Dance Research: The Journal of the Society for Dance Research, 43-70.

[6] Peirce, C. S. (1998). Chance, love, and logic: philosophical essays. Omaha, Nebraska: U. of Nebraska Press.

[7] Mandilaras, V. (1992). Nicomachean Ethics. Athens: Kaktos.

[8] Kant, I. (1781/1999). Critique of Pure Reason. Cambridge, England: Cambridge University Press.

[9] Gillham, N. W. (2001). Sir Francis Galton and the birth of eugenics. Annual Review of Genetics, 35(1), 83-101.

[10] Wadsworth, S. J., Corley, R. P., & DeFries, J. C. (2014). Cognitive abilities in childhood and adolescence. In D. Finkel and C. A. Reynolds (eds.), Behavior Genetics of Cognition Across the Lifespan (pp. 3-40). New York: Springer.

[11] Vinkhuyzen, A. A., Van der Sluis, S., Posthuma, D., & Boomsma, D. I. (2009). The heritability of aptitude and exceptional talent across different domains in adolescents and young adults. Behavior Genetics, 39(4), 380-392.

[12] Marzluf, P. P. (2004). Aptitude or experience? Isocratic ambivalence and the ethics of composition. Rhetoric Review, 23(4), 293-310.

[13] Laceulle, O. M., Ormel, J., Aggen, S. H., Neale, M. C., & Kendler, K. S. (2013). Genetic and environmental influences on the longitudinal structure of neuroticism: A trait-state approach. Psychological Science, 24(9), 1780-1790.

[14] Oikkonen, J., Huang, Y., Onkamo, P., Ukkola-Vuoti, L., Raijas, P., Karma, K., ... & Järvelä, I. (2014). A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Molecular Psychiatry.

[15] Ukkola, L. T., Onkamo, P., Raijas, P., Karma, K., & Järvelä, I. (2009). Musical aptitude is associated with AVPR1A-haplotypes. PLoS One, 4(5), e5534.

[16] Winner, E., & Drake, J. E. (2013). The rage to master: The decisive role of talent in the visual arts (pp. 333-365). In S. B. Kaufman (Ed.), The Complexity of Greatness: Beyond Talent Or Practice. Oxford University Press.

[17] Heckman, J. J. (2011). The Economics of Inequality: The Value of Early Childhood Education. American Educator, 35(1), 31.

[18] Rattan, A;, Good, C. & Dweck, C. S. (2012). “It's ok—Not everyone can be good at math”: Instructors with an entity theory comfort (and demotivate) students." Journal of Experimental Social Psychology 48, 731-737.

[19] Ray, M., Garavalia, L., & Murdock, T. (2003). Aptitude, motivation, and self- regulation as predictors of achievement among developmental college students. Research & Teaching in Developmental Education, 20(1), 5.

[20] Fechner, G. T. (1897). Vorschule der Aesthetik. Leipzig: Breitkopf & Hartel.

[21] Birkhoff, G. P. (1932). Aesthetic Measure. Cambridge, MA: Harvard University Press.

[22] Eysenck, H. J. (1940). The general factor in aesthetic judgments. British Journal of Psychology, 3, 94-102.

[23] Eysenck, H. J. (1941). Type factors in aesthetic judgements. British Journal of Psychology, 31, 262-270.

[24] Eysenck, H. J. (1968). An experimental study of aesthetic preference for polygonal figures. Journal of General Psychology, 79, 3-17.

[25] Eysenck, H. J., and Castle, M. (1970). Training in art as a factor in the determination of preference judgements for polygons. British Journal of Psychology, 61, 65-81.

[26] Götz, K. O., Borisy, A. R., Lynn, R., & Eysenck, H. J. (1979). A new visual aesthetic sensitivity test: I. Construction and psychometric properties. Perceptual and Motor Skills, 49(3), 795–802.

[27] Eysenck, H. J. (1972). Personal preferences, aesthetic sensitivity and personality in trained and untrained subjects. Journal of Personality, 40(4), 544-557.

[28] Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review, 61, 183–193.

[29] Attneave, F. (1957). Physical determinants of the judged complexity of shapes. Journal of Experimental Psychology, 53, 221-226.

[30] Attneave, F. (1959). Stochastic composition processes. Journal of Aesthetics and art Criticism, 17, 503-510.

[31] Noll, A. M. (1966). Human or machine: A subjective comparison of Piet Mondrian's "Composition with Lines" (1917) and a computer-generated picture. The Psychological Record, 16, 1-10.

[32] Noll, A. M. (1966). Computers and the visual arts. Design Quarterly, 66/67, 64-71.

[33] Noll, A. M. (1972). Effects of artistic training on aesthetic preferences for pseudo- random computer-generated patterns. The Psychological Record, 22, 449-462.

[34] Bezruczko, N., and Schroeder, D. H. (1990). Artistic Judgment Project II: Construct validation (Technical Report 1990-1). Chicago: Johnson O'Connor Research Foundation. (ERIC No. 017 064)

[35] Bezruczko, N., and Schroeder, D. H. (1991). Artistic Judgment Project III: Artist validation (Technical Report 1991-1). Chicago: Johnson O'Connor Research Foundation.

[36] Myszkowski, N., Storme, M., Zenasni, F., & Lubart, T. (2014). Is visual aesthetic sensitivity independent from intelligence, personality and creativity? Personality and Individual Differences, 59, 16-20.

[37] Osborne, H. (1979). Some theories of aesthetic judgment. Journal of Aesthetics and Art Criticism, 135-144.

[38] Tan, Y. T., McPherson, G. E., Peretz, I., Berkovic, S. F., & Wilson, S. J. (2014). The genetic basis of music ability. Frontiers in Psychology, 5.

[39] Reiterer, S. M., Hu, X., Erb, M., Rota, G., Nardo, D., Grodd, W., ... & Ackermann, H. (2011). Individual differences in audio-vocal speech imitation aptitude in late bilinguals: functional neuro-imaging and brain morphology. Frontiers in Psychology, 2.

[40] Ellamil, M., Dobson, C., Beeman, M., & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. NeuroImage, 59(2), 1783- 1794.

[41] Pavisian, B., MacIntosh, B. J., Szilagyi, G., Staines, R. W., O'Connor, P., & Feinstein, A. (2014). Effects of cannabis on cognition in patients with MS A psychometric and MRI study. Neurology, 82(21), 1879-1887.

[42] Grüsser, O. J., Selke, T., & Zynda, B. (1988). Cerebral lateralization and some implications for art, aesthetic perception, and artistic creativity. In Beauty and the Brain (pp. 257-293). Birkhäuser Basel.

[43] Van Beek, L., Ghesquière, P., Lagae, L., & De Smedt, B. (2014). Left fronto-parietal white matter correlates with individual differences in children's ability to solve additions and multiplications: A tractography study. NeuroImage, 90, 117-127.

[44] Niogi, S. N., & McCandliss, B. D. (2006). Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia, 44(11), 2178-2188.

[45] Jung, R. E., Ryman, S. G., Vakhtin, A. A., Carrasco, J., Wertz, C., & Flores, R. A. (2014). Subcortical Correlates of Individual Differences in Aptitude. PloS one, 9(2), e89425.

[46] Nagy, Z., Westerberg, H., & Klingberg, T. (2004). Maturation of white matter is associated with the development of cognitive functions during childhood. Journal of Cognitive Neuroscience, 16(7), 1227-1233.

[47] Nauchi, A., and Sakai, K. L. (2009). Greater leftward lateralization of the inferior frontal gyrus in second language learners with higher syntactic abilities. Human Brain Mapping, 30, 3625–3635.

[48] Izumi, S., Itoh, K., Matsuzawa, H., Takahashi, S., Kwee, I. L., & Nakada, T. (2011). Functional asymmetry in primary auditory cortex for processing musical sounds: temporal pattern analysis of fMRI time series. NeuroReport, 22(10), 470-473.

[49] Chamberlain, R., McManus, I. C., Brunswick, N., Rankin, Q., Riley, H., & Kanai, R. (2014). Drawing on the right side of the brain: A voxel-based morphometry analysis of observational drawing. NeuroImage, 96, 167-173.

[50] Efron, R. (2013). The Decline and Fall of Hemispheric Specialization. Oxford, UK: Psychology Press.

[51] Aziz-Zadeh, L., Liew, S. L., & Dandekar, F. (2013). Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, 8(4), 475-480.

[52] McManus, I. C., Chamberlain, R., Loo, P. W., Rankin, Q., Riley, H., & Brunswick, N. (2010). Art students who cannot draw: Exploring the relations between drawing ability, visual memory, accuracy of copying, and dyslexia. Psychology of Aesthetics, Creativity, and the Arts, 4(1), 18.

[53] Mihov, K. M., Denzler, M., & Förster, J. (2010). Hemispheric specialization and creative thinking: A meta-analytic review of lateralization of creativity. Brain and Cognition, 72(3), 442-448.

[54] Bolwerk, A., Mack-Andrick, J., Lang, F. R., Dörfler, A., & Maihöfner, C. (2014). How Art Changes Your Brain: Differential Effects of Visual Art Production and Cognitive Art Evaluation on Functional Brain Connectivity. PloS one, 9(7), e101035.

[55] Makuuchi, M., Kaminaga, T., & Sugishita, M. (2003). Both parietal lobes are involved in drawing: a functional MRI study and implications for constructional apraxia. Cognitive Brain Research, 16(3), 338-347.

[56] Chatterjee, A., & Vartanian, O. (2014). Neuroaesthetics. Trends in Cognitive Sciences, (in press).

[57] Brown, S., Gao, X., Tisdelle, L., Eickhoff, S. B., & Liotti, M. (2011). Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities. NeuroImage, 58(1), 250-258.

[58] Vartanian, O., & Skov, M. (2014). Neural correlates of viewing paintings: Evidence from a quantitative meta-analysis of functional magnetic resonance imaging data. Brain and Cognition, 87, 52-56.

[59] Linacre, M. J. (2006). Rasch Measurement Software and Manual. Chicago: MESA Press.

[60] Moles, A. (1958). Information theory and esthetic perception. Urbana, IL: University of Illinois Press. Originally published as Theorie de l'information et perception esthetique by Flammarian and Cie.

[61] Platt, J. R. (1961). Beauty: Pattern and change. In D. W. Fiske and S. Maddi, (Eds.), Functions of Varied Experience. Homewood, Illinois: The Dorsey Press.

[62] Ashburner, J, & Friston, K. J. (2000). Voxel-based morphometry–the methods. NeuroImage, 11(6 Pt 1):805-821.

[63] Ashburner J, & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3):839-851.

[64] Haier, R. J., Colom, R., Schroeder, D. H., Condon, C. A., Tang, C. Y., Eaves, E., & Head, K. (2009). Gray matter and intelligence factors: Is there a neuro-g? Intelligence, 37, 136-144.

[65] Haier, R. J., Schroeder, D. H., Tang, C., Head, K., & Colom, R. (2010). Gray matter correlates of cognitive ability tests used for vocational guidance. BMC Research Notes, 3(1), 206.

[66] Schroeder, D. H., Haier, R. J., & Tang, C. Y. (2012). Regional gray matter correlates of vocational interests. BMC Research Notes, 5(1), 242.

[67] Tang, C. Y., Eaves, E. L., Ng, J. C., Carpenter, D. M., Mai, X., Schroeder, D. H., ... & Haier, R. J. (2010). Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. Intelligence, 38(3), 293-303.


Full Text

intern file

Sonstige Links