The design of high-level features for photo quality assessment

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Ke, Y., Tang, X., Jing, F.: The design of high-level features for photo quality assessment. In: Fitzgibbon, A., Taylor, C.J., LeCun, Y. (eds.) CVPR (1), pp. 419–426. IEEE Computer Society (2006).

DOI

http://dx.doi.org/10.1109/CVPR.2006.303

Abstract

We propose a principled method for designing high level features forphoto quality assessment. Our resulting system can classify between high quality professional photos and low quality snapshots. Instead of using the bag of low-level features approach, we first determine the perceptual factors that distinguish between professional photos and snapshots. Then, we design high level semantic features to measure the perceptual differences. We test our features on a large and diverse dataset and our system is able to achieve a classification rate of 72% on this difficult task. Since our system is able to achieve a precision of over 90% in low recall scenarios, we show excellent results in a web image search application.

Extended Abstract

Bibtex

Used References

Corel Images. http://elib.cs.berkeley.edu/photos/corel/ 404

V. Athitsos, M. J. Swain, and C. Frankel. Distinguishing photographs and graphics on the world wide web. In CBAIVL, 1997. http://dx.doi.org/10.1109/IVL.1997.629715

M. Boutell and J. Luo. Bayesian fusion of camera metadata cues in semantic scene classification. In CVPR, 2004. http://dx.doi.org/10.1109/CVPR.2004.1315222

F. Cutzu, R. Hammoud, and A. Leykin. Estimating the photorealism of images: Distinguishing paintings from photographs. In CVPR, 2003. http://dx.doi.org/10.1109/CVPR.2003.1211484

N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik. Image quality assessment based on a degradation model. IEEE Transactions on Image Processing, 9(4), 2000. http://dx.doi.org/10.1109/83.841940

L. Frost. The A-Z of Creative Photography. Amphoto Books, 1998.

A. Hartmann and R. Lienhart. Automatic classification of images on the web. In Storage and Retrieval for Media Databases, 2002.

X. Li. Blind image quality assessment. In Proceedings of International Conference on Image Processing, 2002. http://dx.doi.org/10.1109/ICIP.2002.1038057

J. Luo and A. Savakis. Indoor vs outdoor classification of consumer photographs using low-level and semantic features. In Proceedings of International Conference on Image Processing, 2001. http://dx.doi.org/10.1109/ICIP.2001.958601

S. Lyu and H. Farid. How realistic is photorealistic. IEEE Transactions on Signal Processing, 37(3), 1999. http://dx.doi.org/10.1109/TSP.2004.839896

G. Pavlovic and A. M. Tekalp. Maximum likelihood parametric blur identification based on a continuous spatial domain model. IEEE Transactions on Image Processing, 1(4), 1992. http://dx.doi.org/10.1109/83.199919

B. Peterson. Learning to See Creatively. Amphoto Books, 2003.

H. R. Sheikh, A. C. Bovik, and L. Cormack. No-reference quality assessment using natural scene statistics: JPEG2000. IEEE Transactions on Image Processing, 14(11), 2005. http://dx.doi.org/10.1109/TIP.2005.854492

M. Szummer and R. W. Picard. Indoor-outdoor image classification. In CBAIVL, 1998. http://dx.doi.org/10.1109/CAIVD.1998.646032

H. Tong, M. Li, H. Zhang, J. He, and W. Ma. Learning no-reference quality metric by examples. In Proceedings of International Conference on Multimedia Modelling, 2005. http://dx.doi.org/10.1109/MMMC.2005.52

H. Tong, M. Li, H. Zhang, J. He, and C. Zhang. Blur detection for digital images using wavelet transform. In Proceedings of International Conference on Multimedia and Expo, 2004. http://dx.doi.org/10.1109/ICME.2004.1394114

H. Tong, M. Li, H. Zhang, J. He, and C. Zhang. Classification of digital photos taken by photographers or home users. In Proceedings of Pacific Rim Conference on Multimedia, 2004.

A. Vailaya, A. Jain, and H. Zhang. On image classification: City vs. landscape. In CBAIVL, 1998. http://dx.doi.org/10.1109/IVL.1998.694464

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment based on a degradation model. IEEE Transactions on Image Processing, 9(4), 2000.


Links

Full Text

http://www.cs.cmu.edu/~yke/photoqual/cvpr06photo.pdf

intern file

Sonstige Links