Toward Efficient Automatic Construction of Image Processing Algorithm

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Reference

Shinichi Shirakawa and Tomoharu Nagao: Feed Forward Genetic Image Network: Toward Efficient Automatic Construction of Image Processing Algorithm. Advances in Visual Computing: Proceedings of the 3rd International Symposium on Visual Computing (ISVC 2007) Part II, Lecture Notes in Computer Science, Vol. 4842, pp. 287-297, Springer, November 26-28 2007.

DOI

http://dx.doi.org/10.1007/978-3-540-76856-2_28

Abstract

A new method for automatic construction of image transformation, Feed Forward Genetic Image Network (FFGIN), is proposed in this paper. FFGIN evolves feed forward network structured image transformation automatically. Therefore, it is possible to straightforward execution of network structured image transformation. The genotype in FFGIN is a fixed length representation and consists of string which encode the image processing filter ID and connections of each node in the network. In order to verify the effectiveness of FFGIN, we apply FFGIN to the problem of automatic construction of image transformation which is “pasta segmentation” and compare with several method. From the experimental results, it is verified that FFGIN automatically constructs image transformation. Additionally, obtained structure by FFGIN is unique, and reuses the transformed images.

Extended Abstract

Bibtex

Used References

Aoki, S., Nagao, T.: Automatic construction of tree-structural image transformation using genetic programming. In: Proceedings of the 1999 International Conference on Image Processing (ICIP 1999), Kobe, Japan, vol. 1, pp. 529–533. IEEE, Los Alamitos (1999) http://dx.doi.org/10.1109/ICIP.1999.821685

Nakano, Y., Nagao, T.: 3D medical image processing using 3D-ACTIT; automatic construction of tree-structural image transformation. In: Proceedings of the International Workshop on Advanced Image Technology (IWAIT-2004), Singapore, pp. 529–533 (2004)

Nakano, Y., Nagao, T.: Automatic construction of abnormal signal extraction processing from 3D diffusion weighted image. In: Proceedings of the International Workshop on Advanced Image Technology (IWAIT-2007), Bangkok, Thailand (2007)

Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)

Shirakawa, S., Nagao, T.: Genetic image network (GIN): Automatically construction of image processing algorithm. In: Proceedings of the International Workshop on Advanced Image Technology (IWAIT-2007), Bangkok, Thailand (2007)

Teller, A., Veloso, M.: Algorithm evolution for face recognition: What makes a picture difficult. In: International Conference on Evolutionary Computation, Perth, Australia, pp. 608–613. IEEE Press, Los Alamitos (1995) http://dx.doi.org/10.1109/ICEC.1995.487453

Teller, A., Veloso, M.: PADO: A new learning architecture for object recognition. In: Ikeuchi, K., Veloso, M. (eds.) Symbolic Visual Learning, pp. 81–116. Oxford University Press, Oxford (1996)

Poli, R.: Evolution of graph-like programs with parallel distributed genetic programming. In: Proceedings of the Seventh International Conference on Genetic Algorithms, East Lansing, MI, USA, pp. 346–353. Morgan Kaufmann, San Francisco (1997)

Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Transactions on Evolutionary Computation 10, 167–174 (2006) http://dx.doi.org/10.1109/TEVC.2006.871253

Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)

Hirasawa, K., Okubo, M., Hu, J., Murata, J.: Comparison between genetic network programming (GNP) and genetic programming (GP). In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), Seoul, Korea, pp. 1276–1282. IEEE Computer Society Press, Los Alamitos (2001) http://dx.doi.org/10.1109/CEC.2001.934337

Eguchi, T., Hirasawa, K., Hu, J., Ota, N.: A study of evolutionary multiagent models based on symbiosis. IEEE Transactions on Systems, Man and Cybernetics Part B 36, 179–193 (2006) http://dx.doi.org/10.1109/TSMCB.2005.856720

Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87, 1423–1447 (1999) http://dx.doi.org/10.1109/5.784219

Stanley, K.O.: Efficient evolution of neural networks through complexification. Technical Report AI-TR-04-314, Ph.D. Thesis; Department of Computer Sciences, The University of Texas at Austin (2004)

Satoh, H., Yamamura, M., Kobayashi, S.: Minimal generation gap model for considering both exploration and exploitations. In: Proceedings of the IIZUKA 1996, pp. 494–497 (1996)

Kita, H., Ono, I., Kobayashi, S.: Multi-parental extension of the unimodal normal distribution crossover for real-coded genetic algorithms. In: Proceedings of the 1999 Congress on Evolutionary Computation (CEC 1999), vol. 2, pp. 1581–1587 (1999)


Links

Full Text

[extern file]

intern file

Sonstige Links