Aesthetic Evaluation: Automated Fitness Functions for Evolutionary Art, Design, and Music

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Philip Galanter: Aesthetic Evaluation: Automated Fitness Functions for Evolutionary Art, Design, and Music. In: Proceeding of the fifteenth annual conference companion on Genetic and evolutionary computation conference companion GECCO 2013, 1005-1038.



Computational Aesthetic Evaluation:

Computer systems capable of making normative judgments related to questions of beauty and taste in the arts

Type 1 - Simulate, predict, or cater to human notions of beauty and taste.

Type 2 - Meta-aesthetic exploration of all possible emergent machine aesthetics in a way disconnected from human experience.

Extended Abstract


Used References

Aguilar, C., & Lipson, H. (2008). A robotic system for interpreting images into painted artwork. Paper presented at the International Conference on Generative Art.

Arnheim, R. (1974). Art and visual perception: a psychology of the creative eye (New, expanded and revised ed.). Berkeley: University of California Press.

Bense, M. (1965). Aesthetica; Einführung in die neue Aesthetik. Baden-Baden,: Agis-Verlag.

Bentley, P. and Corne, D. (2002). An introduction to creative evolutionary systems, in P. Bentley and D. Corne (eds), Creative Evolutionary Systems, Morgan Kaufmann, Academic Press, San Francisco, CA, San Diego, CA, pp. 1 – 75.

Berlyne, D. E. (1960). Conflict, arousal, and curiosity. New York,: McGraw-Hill.

Berlyne, D. E. (1971). Aesthetics and psychobiology. New York,: Appleton-Century-Crofts.

Birkhoff, G. D. (1933). Aesthetic measure. Cambridge, Mass.,: Harvard University Press.

Brooks, Hopkins, Neumann & Wright. "An experiment in musical composition." IRE Transactions on Electronic Computers, Vol. 6, No. 1 (1957).

Coleridge, S. T., Coleridge, H. N., Coleridge, J. T., & Woodring, C. (1990). Table talk. Princeton, N.J.: Princeton University Press

Collier , G.L., Why Does Music Express Only Some Emotions? A Test Of A Philosophical Theory. Empirical Studies of the Arts, 2002. 20(1): p. 21-31.

Coney , J. and C. Bruce Hemispheric Processes In The Perception Of Art. Empirical Studies of the Arts, 2004. 22(2): p. 181-200.

Cooper, J.M. and P.J. Silvia Opposing Art: Rejection As An Action Tendency Of Hostile Aesthetic Emotions. Empirical Studies of the Arts, 2009. 27(1): p. 109-126.

Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. Computer Vision - Eccv 2006, Pt 3, Proceedings, 3953, 288-301.

Alan Dorin (2005). Enriching Aesthetics with Artificial Life. In A. Adamatzky & M. Komosinski (Eds.), Artificial life models in software (pp. 415-431). London: Springer-Verlag.

Dutton, D. (2009). The art instinct : beauty, pleasure, & human evolution (1st U.S. ed.). New York: Bloomsbury Press.

Draves, S. (2005). The electric sheep screen-saver: A case study in aesthetic evolution. Applications of Evolutionary Computing, Proceedings, 3449, 458-467.

Emerson, R. W. (1979). Nature, addresses, and lectures (2d ed.). New York: AMS Press.

Feist , G.J. and T.R. Brady Openness To Experience, Non-Conformity, And The Preference For Abstract Art. Empirical Studies of the Arts, 2004. 22(1): p. 77-89.

Firstov, V., et al., The Colorimetric Barycenter Of Paintings. Empirical Studies of the Arts, 2007. 25(2): p. 209-217.

Fogel, L. J. (1999). Intelligence through simulated evolution : forty years of evolutionary programming. New York: Wiley.

Galanter, P. (2003). What is Generative Art? Complexity theory as a context for art theory. Paper presented at the International Conference on Generative Art, Milan, Italy.

Galanter, P. (2010). Complexity, Neuroaesthetics, and Computational Aesthetic Evaluation. Paper presented at the International Conference on Generative Art, Milan, Italy.

Galanter, P. (2010). The problem with evolutionary art is..., in C. DiChio, A. Brabazon, et al (eds), Applications of Evolutionary Computation, Pt Ii, Proceedings, Vol. 6025 of Lecture Notes in Computer Science, Springer-Verlag Berlin, Berlin, pp. 321–330.

Galanter, P. (2012 in press). Computational Aesthetic Evaluation: Past and Future. In J. McCormack & M. d'Inverno (Eds.), Computers and Creativity. Berlin: Springer. (see for a copy)

Gedeon, T. s. (2008). Neural network for modeling esthetic selection. Lecture Notes in Computer Science, 4985 LNCS(PART 2), 666-674.

Gell-Mann, M., & Lloyd, S. (1996). Information measures, effective complexity, and total information. Complexity, 2(1), 44-52.

Giannini, A.M. and P. Bonaiuto, Special Image Contents, Personality Features, And Aesthetic Preferences. Empirical Studies of the Arts, 2003. 21(2): p. 143-154.

Glette, K., Torresen, J., & Yasunaga, M. (2007). An Online EHW Pattern Recognition System Applied to Face Image Recognition Applications of Evolutionary Computing (pp. 271-280): Springer.

Greenfeld, G. R. (2003). Evolving aesthetic images using multiobjective optimization. Cec: 2003 Congress On Evolutionary Computation, Vols 1-4, Proceedings, 1903-1909.

Greenfield, G. R. (2008). Co-evolutionary Methods in Evolutionary Art. In J. Romero & P. Machado (Eds.), The Art Of Artificial Evolution (pp. 357-380): Springer Berlin Heidelberg.

Hawkins, J. and Blakeslee, S. (2004). On intelligence, 1st edn, Times Books, New York.

Hazan, A., Ramirez, R., Maestre, E., Perez, A., & Pertusa, A. (2006). Modelling Expressive Performance: A Regression Tree Approach Based on Strongly Typed Genetic Programming Applications of Evolutionary Computing (pp. 676-687).

Holger, H. (1997). Why a special issue on the golden section hypothesis?: An introduction. Empirical Studies of the Arts, 15.

Jacobsen , T., & Höfel, L. (2001). Aesthetics Electrified: An Analysis Of Descriptive Symmetry And Evaluative Aesthetic Judgment Processes Using Event-Related Brain Potentials. Empirical Studies of the Arts, 19(2), 14.

Oelmann, H. and B. Laeng, The emotional meaning of harmonic intervals. Cognitive Processing, 2009. 10(2): p. 113-131.

Katz, B.F., Color Contrast And Color Preference. Empirical Studies of the Arts, 1999. 17(1): p. 1-24.

Koob, A. (2009). The Root of Thought: What Do Glial Cells Do? Mind Matters Retrieved 11/29/09, 2009, from

Kolmogorov, A. N. (1965). Three approaches to the quantitative definition of information. Problems in Information Transmission, 1, 1-7.

Komar, V., Melamid, A., & Wypijewski, J. (1997). Painting by numbers : Komar and Melamid's scientific guide to art (1st ed.). New York: Farrar Straus Giroux.

Koneni, V.J., Does music induce emotion? A theoretical and methodological analysis. Psychology of Aesthetics, Creativity, and the Arts, 2008. 2(2): p. 115-129.

Kozbelt, A., Dynamic Evaluation Of Matisse’s 1935 Large Reclining Nude. Empirical Studies of the Arts, 2006. 24(2): p. 119-137.

Latto, R. and K. Russell-Duff, An Oblique Effect In The Selection Of Line Orientation By Twentieth Century Painters. Empirical Studies of the Arts, 2002. 20(1): p. 49-60.

Law, E., & Phon-Amnuaisuk, S. (2008). Towards Music Fitness Evaluation with the Hierarchical SOM Applications of Evolutionary Computing (pp. 443-452): Springer.

Livio, M. (2003). The golden ratio : the story of phi, the world's most astonishing number (1st trade pbk. ed.). New York: Broadway Books.

Locher, P., et al., Artists’ Use Of Compositional Balance For Creating Visual Displays. Empirical Studies of the Arts, 2001. 19(2): p. 213-227.

Machado, P., & Cardoso, A. (2002). All the Truth About NEvAr. [10.1023/A:1013662402341]. Applied Intelligence, 16(2), 101-118.

Machado, P., & Cardoso, A. l. (2003). NEvAr – System Overview. Paper presented at the International Conference on Generative Art.

Machado, P., Romero, J., Santos, A., Cardoso, A., & Pazos, A. (2007). On the development of evolutionary artificial artists. [doi: DOI: 10.1016/j.cag.2007.08.010]. Computers & Graphics, 31(6), 818-826.

Machotka, P., Artistic Styles And Personalities: A Close View And A More Distant View. Empirical Studies of the Arts, 2006. 24(1): p. 71-80.

Magnus, C. (2006). Evolutionary Musique Concrète. In F. Rothlauf & J. Branke (Eds.), Applications of Evolutionary Computing, EvoWorkshops 2006 (pp. 688-695). Berlin: Springer. Fornari, J. (2007). Creating soundscapes using evolutionary spatial control. Lecture Notes in Computer Science, 4448 LNCS, 517-526.

Manaris, B., Vaughan, D., Wagner, C., Romero, J., & Davis, R. B. (2003). Evolutionary music and the Zipf-Mandelbrot law: Developing fitness functions for pleasant music. Applications of Evolutionary Computing, 2611, 522-534.

Manaris, B., Machado, P., McCauley, C., Romero, J., & Krehbiel, D. (2005). Developing fitness functions for pleasant music: Zipf's law and interactive evolution systems. Applications of Evolutionary Computing, Proceedings, 3449, 498-507.

Martindale, C. (1990). The clockwork muse: the predictability of artistic change. New York, N.Y.: BasicBooks.

Martindale, C., Moore, K. and Borkum, J. (1990). Aesthetic preference: Anomalous findings for berlyne’s psychobiological theory, The American Journal of Psychology 103(1): 53–80. DOI:

Martindale, C. (1991). Cognitive psychology: a neural-network approach, Brooks/Cole Publishing Company, Pacific Grove, California.

Martindale, C. (2007). A neural-network theory of beauty, in C. Martindale, P. Locher and V. Petrov (eds), Evolutionary and neurocognitive approaches to aesthetics, creativity, and the arts, Bay- wood, Amityville, N.Y., pp. 181–194.

McCormack, J. (2005). Open problems in evolutionary music and art, APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS 3449: 428–436.

McCormack, J., & Bown, O. (2009). Life's What You Make: Niche Construction and Evolutionary Art. Paper presented at the Proceedings of the EvoWorkshops 2009 on Applications of Evolutionary Computing.

McDermott, J., Griffith, N. J. L., & O’Neill, M. (2005). Toward User-Directed Evolution of Sound Synthesis Parameters. Applications of Evolutionary Computing, Proceedings, 3449, 517-526.

Mitchell, T. J., & Pipe, A. G. (2005). Convergence Synthesis of Dynamic Frequency Modulation Tones Using an Evolution Strategy Applications on Evolutionary Computing (pp. 533-538).

Moles, A. A. (1966). Information theory and esthetic perception. Urbana,: University of Illinois Press.

Neufeld, C., Ross, B. J., & Ralph, W. (2008). The Evolution of Artistic Filters. In J. Romero & P. Machado (Eds.), The art of artificial evolution : a handbook on evolutionary art and music (pp. 335-356). Berlin: Springer.

Parker, S., et al., Positive and negative hedonic contrast with musical stimuli. Psychology of Aesthetics, Creativity, and the Arts, 2008. 2(3): p. 171-174.

Peitgen, H.-O., Jürgens, H., & Saupe, D. (1992). Chaos and fractals : new frontiers of science. New York: Springer-Verlag.

Phon-Amnuaisuk, S. (2007). Evolving music generation with SOM-fitness genetic programming. Lecture Notes in Computer Science, 4448 LNCS, 557-566.

Pinker, S. (1994). The language instinct (1st ed.). New York, NY: W. Morrow and Co.

Polzella, D.J., S.H. Hammar, and C.W. Hinkle, The Effect Of Color On Viewers’ Ratings Of Paintings. Empirical Studies of the Arts, 2005. 23(2): p. 153-163.

Craig Reynolds (1987): Flocks, herds, schools. A distributed behavioural model. Computer Graphics, 21(4), 25-34.

Rob Saunders, John Gero: Curious agents and situated design evaluations. AI EDAM: Artificial Intelligence for Engineering Design, Analysis and Manufacturing.2004, 18, 2, 153-161.

Schimmel, K. and J. Forster, How temporal distance changes novices' attitudes towards unconventional arts. Psychology of Aesthetics, Creativity, and the Arts, 2008. 2(1): p. 53-60.

Schmidhuber, J. (2012 in press). A Formal Theory of Creativity to Model the Creation of Art. In J. McCormack & M. d'Inverno (Eds.), Computers and Creativity. Berlin: Springer.

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379--423.

Simonton, D.K., Film music: Are award-winning scores and songs heard in successful motion pictures? Psychology of Aesthetics, Creativity, and the Arts, 2007. 1(2): p. 53-60.

Sims, K. (1991). Artificial Evolution For Computer-Graphics. Siggraph 91 Conference Proceedings, 25, 319-328.

Sims, K. (1994). Evolving Virtual Creatures. Siggraph '94 Proceedings, 28, 15-22.

Smith, L.F., et al., Effects Of Time And Information On Perception Of Art*. Empirical Studies of the Arts, 2006. 24(2): p. 229-242.

Stewart, M. (2008). Launching the imagination : a comprehensive guide to basic design (3rd ed.). Boston: McGraw-Hill Higher Education.

Taylor, R. P. (2006). Chaos, Fractals, Nature: a new look at Jackson Pollock. Eugene, USA: Fractals Research.

Todd, P. M., & Werner, G. M. (1998). Frankensteinian Methods for Evolutionary Music Composition. In N. Griffith & P. M. Todd (Eds.), Musical networks: Parallel distributed perception and performance. Cambridge, MA: MIT Press/Bradford Books.

Todd, P. M. (1989). A Connectionist Approach to Algorithmic Composition. Computer Music Journal, 13(4), 27-43.

Todd, S., & Latham, W. (1992). Evolutionary art and computers. London ; San Diego: Academic Press.

Urbano, P. (2006). Consensual paintings. Applications Of Evolutionary Computing, Proceedings, 3907, 622-632.

Voss, R. F., & Clarke, J. (1975). 1-F-Noise in Music and Speech. [Article]. Nature, 258(5533), 317-318.

Watanabe , S. (2009). Pigeons can discriminate “good” and “bad” paintings by children. [10.1007/s10071-009-0246-8]. Animal Cognition, 13(1).

Watanabe S (2001) Van Gogh, Chagall and pigeons. Animal Cognition 4:147–151

Wilson, D. J. (1939). An experimental investigation of Birkhoff's aesthetic measure. The Journal of Abnormal and Social Psychology, 34(3), 390-394.


Full Text Presentation Slides

intern file

Sonstige Links