Animating Typescript Using Aesthetically Evolved Images

Aus de_evolutionary_art_org
Wechseln zu: Navigation, Suche


Ashley Mills: Animating Typescript Using Aesthetically Evolved Images. In: EvoMUSART 2016, 126-134.



The genotypic functions from apriori aesthetically evolved images are mutated progressively and their phenotypes sequenced temporally to produce animated versions. The animated versions are mapped onto typeface and combined spatially to produce animated typescript. The output is then discussed with reference to computer aided design and machine learning.

Extended Abstract


booktitle={Evolutionary and Biologically Inspired Music, Sound, Art and Design},
series={Lecture Notes in Computer Science},
editor={Johnson, Colin and Ciesielski, Vic and Correia, João and Machado, Penousal},
title={Animating Typescript Using Aesthetically Evolved Images},
url={ },
publisher={Springer International Publishing},
keywords={Aesthetic evolution animated, Animated typeface, Typescripts},
author={Mills, Ashley},

Used References

1. Karl Sims: Artificial evolution for computer graphics. In: SIGGRAPH 1991 Proceedings, vol. 25, pp. 319–328. ACM, New York (1991),

2. Stephen Todd, William Latham: Evolutionary Art and Computers. 1 Aufl., Academic Press Inc, Orlando, 1992, ISBN 978-0124371859, 288 Seiten.

3. Penousal Machado, Amílcar Cardoso: NEvAr – the assessment of an evolutionary art tool. In: Proceedings of the AISB 2000 Symposium on Creative and Cultural Aspects and Applications of AI and Cognitive Science (2000).

4. Steven Rooke: Eons of genetically evolved algorithmic images. In: Bentley, Peter J.; Corne, David W.: Creative Evolutionary Systems. Academic Press, 2001. 339 - 365.

5. Jon McCormack: Aesthetic Evolution of L-Systems Revisited. In: EvoMUSART 2004, 477-486. DOI:

6. Ashley Mills: Evolving aesthetic images. MSc Mini Project Thesis (2005).​ae/​EvolutionaryArt.​pdf 404

7. Tiago Martins, João Correia, Ernesto Costa, Penousal Machado: Evotype: Evolutionary Type Design. In: EvoMUSART 2015, 136-147. DOI:

8. Ffmpeg.

9. Merritt, L., Vanam, R.: x264: A high performance h. 264/AVC encoder (2006).​library/​avc/​overview_​x264_​v8_​5.​pdf

10. Noé, A.: Matroska file format (2009).​files/​matroska.​pdf

11. Multimedia examples of the artifacts described in this paper.​evomusart2016

12. Nikolov, N.: Organo font landing page.​organo-font/​

13. Cover, T.: Geometrical and statistical properties of systems of linear in equalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 3(EC–14), 326–334 (1965)

14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

15. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

16. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16(3), 285–317 (1985)


Full Text

internal file

Sonstige Links